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Resumo

Nesta tese são estudados um dos mais pequenos, ainda assim mais complexos, sistemas conhecidos
na Natureza: os mesões. O grande interesse destes estudos teóricos sobre mesões advém de poderem
permitir a identificação de possíveis estados exóticos nos resultados da actividade experimental já re-
alizada ou planeada. Os mesões constituídos por quarks leves são sistemas relativistas e, por isso, o
nosso objectivo é modelar estas partículas à luz de um formalismo covariante de quarks constituintes
baseado na Covariant Spectator Theory (CST)-Teoria Covariante da Partícula Espectadora. Uma das
características apelativas deste formalismo é a possibilidade de incorporar, simultânea e consistente-
mente, o confinamento e a quebra espontânea da simetria quiral.

Começamos por considerar os sistemas mesónicos com uma abordagem inteiramente não rela-
tivista através da equação de Schrödinger, onde são calculados os espectros de massa e funções de
onda, para referência. Verificámos que a descrição não-relativista no sector de mesões com quarks
pesados é válida. O estudo foi feito no espaço das configurações e posteriormente no espaço dos mo-
mentos, para um estado de momento angular arbitrário, pois o espaço dos momentos é o espaço natural
para definir a energia cinética e interações relativistas. O aparecimento de singularidades no kernel
das equações exigiu o desenvolvimento de técnicas originais e sofisticadas para a sua remoção, bem
como a implementação de métodos numéricos que foram comparados e testados para alta precisão.
Salienta-se que as técnicas de subtração apresentadas tornaram possível resolver o problema do con-
finamento no espaço dos momentos sem utilizar nos cálculos numéricos um parâmetro de blindagem
("screening"), como é pratica usual na literatura.

A metodologia desenvolvida no domínio não relativista é depois generalizada para o caso rela-
tivista, onde é resolvida a equação para a função de vértice de duas partículas (equação 1CS) através
do uso de splines. Adicionalmente é mostrado o limite de uma partícula desta equação, tomando
razões de massa sucessivamente maiores, o que reproduz os resultados da equação de Dirac para uma
partícula. De forma análoga, ilustra-se a redução ao caso não-relativista da equação 1CS que, no limite
das massas muito grandes, reproduz os resultados da equação de Schrödinger. A obtenção numérica
deste limite fundamenta, pelos seus resultados, a generalização relativista da interação de confina-
mento escolhida.

Como conclusão, enumeram-se as principais aplicações do modelo e listam-se os aspectos a de-
senvolver, trabalho este que se encontra actualmente em curso.

Palavras-Chave: Mesões, Teoria de Campo Efectiva, Teoria Covariante da Partícula Espetadora
(CST), Modelo de Gross & Milana, Splines.
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Abstract

The objective of this thesis is a theoretical study of one of the smallest, yet rather complex, systems
known in nature: the mesons.

Theoretical studies of mesonic states are of great interest, namely, for the identification of exotic
mesons that may emerge from spectroscopic data collected in current and planned experimental activ-
ities. Mesons made of light quarks have to be described relativistically and in this work we study a
particular covariant framework, the Covariant Spectator Theory (CST), and show how it is suitable for
these studies since it incorporates consistently confinement and spontaneous chiral symmetry break-
ing.

We start by treating the mesons as valence quark-antiquark pairs interacting through a static poten-
tial, and we solve the corresponding nonrelativistic Schrödinger equation, for reference. We compute
mass spectra and wave functions. This first set of calculations confirmed that a nonrelativistic descrip-
tion is adequate for the heavy mesonic sector, while it is not valid for mesons made of light quarks.
Because relativistic kinetic energy and interactions are naturally given in momentum space, we per-
form those calculations in momentum space and for general angular momentum states, in preparation
for the relativistic calculations. The momentum-space calculations have difficulties originated by sin-
gularities in the kernel. We introduced new numerical methods involving sophisticated subtraction
methods which enable us to solve the linear confinement problem in momentum space without using
a screening parameter – a common practice in the literature. We also implemented and compared
powerful numerical methods aiming at high precision.

The definition of the confinement potential in the non-relativistic domain is then generalized to the
relativistic case, where we solved the two-body spectator equation for the vertex function by applying
the method of splines. Additionally, it is shown that the one-body limit of this equation is the Dirac
equation, for the light quark moving in the presence of the infinitely heavy one, when one takes the
ratio between the two constituent masses tend to infinity. It is also seen that results from the relativis-
tic equation coincide with the non-relativistic Schrödinger results when both masses are very large.
The success in obtaining this limit confirms that our choice for the relativistic generalization of the
confinement interaction is robust.

Finally, the main applications of the model are described and procedures to improve upon the 1CS
equation are presented. Some of these aspects are currently under development.

Keywords: Mesons, Effective Quantum Field Theory, Covariant Spectator Theory (CST), Gross
& Milana’s Model, Splines.
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Chapter 1

Introduction

‘The journey from Kamakura to Kyoto takes twelve days. If you travel for eleven but stop with only
one day remaining, how can you admire the moon over the capital?’

Writings of Nichiren Daishonin, p.1027

‘Our treasure lies in the beehive of our knowledge. We are perpetually on the way thither, being by
nature winged insects and honey gatherers of the mind.’

Friedrich Nietzsche

1.1 Motivation

The objective of this thesis is a theoretical study of one of the smallest, yet rather complex, sys-
tems known in nature: the mesons.

Mesons are hadronic particles composed of quarks and gluons, bound together by the strong inter-
action. Their study is interesting not only for the understanding of the effective nuclear force between
nucleons in nuclei – which is in part interpreted as meson exchange processes – but also to get more in-
sight into the unique properties of the elementary strong interaction. In fact, an open question of great
importance is to understand the connection between the strong interaction acting between elementary
quarks, as described by gluon exchange, and the emergence of confinement in hadrons. The answer to
this question elucidates on how complex systems can be constructed from elementary ones. It should
be emphasized that the confinement interaction has a unique many-body dynamics compared with the
dynamics involved in the clustering of nucleons to nuclei or in the clustering of atoms to molecules.
This is due to the self-interacting non-linear character of the gluons in non-abelian QCD. It is also
worth mentioning that although QCD is believed to be the fundamental field theory of the strong in-
teraction, because of the large value of its coupling constant in the low and medium energy regime, it
becomes very difficult to solve it, because one cannot use perturbation theory. It is thus necessary to
develop other approaches.

Our main and general motivation in this work is to create, in the near future, a unified and consis-
tent relativistic model for mesons as quark-antiquark bound states that can be applied to both heavy
and light mesons. The model should satisfy a number of important requirements: (i) the formalism
used should be covariant, which is essential for the description of systems composed of light quarks;
(ii) the quarks should be strictly confined; (iii) the structure and mass of the constituent quarks them-
selves, i.e., their self-energy, should be described consistently through the same confining interaction
that acts between pairs of quarks; and (iv) the model should reflect the requirements of chiral symme-
try (i.e. when the bare mass of a quark qi approaches zero, a massless qiq̄i bound state must emerge).

13



1 Introduction 1.1 Motivation

In the process, knowledge on both the Dirac structure of the effective confinement interaction and the
form of the low energy effective one-gluon-exchange interaction is to be gained.

This is of great interest because it will support the analysis of emerging spectroscopic data col-
lected in current and planned experimental activities in Europe and in the USA, for a extensive search
for exotic mesons, with a structure that is not reduced to a quark-antiquark pair. Moreover, there
are two other possible applications that we can highlight: i) the computation of the pion transition
form factor, a necessary input for the hadronic contribution to the anomalous magnetic moment of the
muon, which is nowadays being investigated for possible signs of Physics beyond the Standard Model
ref.[1]; ii) the production of lepton pairs whose precise knowledge is mandatory in the search for the
quark-gluon plasma ref.[2].

In this thesis we will use the Covariant Spectator Theory (CST) formalism (ref.[4], [5], [6]). CST
is based on Relativistic Quantum Field Theory which has been widely and very successfully used in
different types of few-body systems, namely problems involving few nucleons. For a recent review
of the CST theory one should see ref.[7]. CST has unique properties since it is entirely covariant and
allows us to the treat confinement and spontaneous breaking of chiral symmetry in a consistent way.

In a work called “Covariant, chirally symmetric model of mesons” (ref.[3]), labeled as GM model
throughout this dissertation, Gross and Milana applied it for the first time to the study of mesons. The
work was ideally thought to describe all the mesonic spectrum, from the π to the ϒ, providing a robust
and useful theoretical basis in which interesting mesonic properties can be computed. However, in
the numerical calculations performed so far, the constituent quark mass has been treated as a constant
(ref.[3, 8, 9]) or as a phenomenological function not related to the kernel (ref.[10]). On of our aims is
to correct this deficiency in future work.

This thesis is constructed in a “step-by-step” way, without avoiding any technical numerical diffi-
culties which arise very quickly, even in simpler approaches than the GM model, and by treating them
extensively and testing the numerical methods. Finding new and more efficient solutions to some of
these technical difficulties is one of the major contributions of this thesis which, undoubtedly, serves
as the unavoidable preparatory work to establish, in the near future, a code for reliable predictions of
masses of pure qq̄ pairs, which is in order for a definite identification of hybrid states.

14



1 Introduction 1.2 From the Yukawa’s prediction to present day challenges

1.2 From the Yukawa’s prediction to present day challenges

Figure 1.1: Hideki Yukawa."Suppose there is something which a person cannot understand. He happens to
notice the similarity of this something to some other thing which he understands quite well. By comparing them
he may come to understand the thing which he could not understand up to that moment. If his understanding
turns out to be appropriate and nobody else has ever come to such an understanding, he can claim that his
thinking was really creative". Creativity and Intuition: A Physicist Looks at East and West (1973), p.144.

For many ages, an important aim of science has been to explain the phenomena we observe
in terms of the properties of fundamental particles. In modern physics this problem is still crucially
importance 1. During the last sixty, seventy years, particles called “mesons” turned out to be particu-
larly interesting. The mesons are particles heavier than the electrons but lighter than the nuclei of the
hydrogen atoms, i.e. the protons.

The mesons were entirely unknown until Hideki Yukawa in 1934 predicted their existence on the
basis of a theoretical investigation of the nuclear forces. This achievement brought him the Nobel
Prize in Physics in 1949.

From earlier research by Heisenberg and others one knew that an atomic nucleus, i.e. the central
core of an atom, was composed of protons and other particles which have the same mass as the protons
but no charge, the neutrons. These building blocks of the atomic nuclei were called “nucleons” and
were held together by the so-called nuclear forces.

Attacking the problem of the origin and nature of those forces, which are of short-range, Yukawa
used the electromagnetic field as a model. He found that this field could be modified so as to give
forces which have a short range. He therefore assumed that the new field corresponded to the nuclear
forces. Each field of force is, according to modern theories, associated with some kind of particles.
Yukawa discovered that there was a simple relation between the range of these forces and the mass
of the corresponding particles. However, the name of “mesons” for these particles was not introduced
until later.

Specifically for the strong nuclear force, Yukawa proposed that an unknown particle, now
called a pion, was exchanged between nucleons, transmitting the force between them. The pion has
mass, and therefore an energy ∆E = mc2, and can only be created in a virtual process occurring for a
sufficiently short period of time, given by the Heisenberg uncertainty principle

∆E∆t ≥
h

4π
, (1.1)

The larger the mass, the greater ∆E, and the shorter is the time ∆t during which it can exist. This
means that the range of the force is limited, because the particle can only travel a finite distance in

1Nowadays, one of the most thrilling breakthroughs of Physics is just taking place in the LHC in CERN, with the
discovery of the Higgs boson, predicted by Peter Higgs in ref.[11].
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1 Introduction 1.2 From the Yukawa’s prediction to present day challenges

a finite amount of time. In fact, the maximum distance is d ≈ c∆t, where c is the speed of light. So
taking the range of the strong nuclear force to be about 1 fermi (10−15m), the time during which the
pion exists is approximately:

∆t ≈
d
c
=

10−15m
3.0×108 ms−1 ≈ 3.3×10−24s (1.2)

and ∆E is

∆E ≈
6.63×10−34J.s

4π (3.3×10−24s)
. (1.3)

Solving this and converting the energy to MeV gives

∆E ≈
(
1.6×10−11J

) 1MeV
1.6×10−13J

= 100MeV (1.4)

and so the mass of the pion should be of the order of

m≈ 100MeV/c2. (1.5)

This is about 200 times the mass of an electron and about one-tenth the mass of a nucleon. No
such particles were known at the time Yukawa made his bold proposal, and one pertinent question that
arose then was how its existence could be verified if the pion, being a virtual particle, was impossible
to be seen directly? The answer is that if a sufficient amount of energy was transfered to the nucleus,
it should be possible, in principle, to free the pion, that is, to create its mass from an external energy
input. This could be accomplished by collisions of energetic particles with nuclei, but energies greater
than 100 MeV were required to conserve both energy and momentum. At the time Yukawa thought
about it and emphasized that these particles were expected to appear in the cosmic radiation, in which
particles of great energy had been previously found.

His prediction turned out to be correct and, in 1937, the study of the cosmic radiation gave the first
experimental evidence of the existence of mesons. This evidence was given by Anderson and Ned-
dermeyer ref.[12] and other American physicists. Since that time, the mesons in the cosmic radiation
have been studied. These investigations have been guided by the theory of Yukawa. A new period
in meson research began about three years later. The British physicist Powell and his collaborators
ref.[13] then found that there existed two kinds of mesons. The mesons of one kind were those found
in 1937, whereas the mesons of the other kind were somewhat heavier and different also in other as-
pects.

These experimental investigations have shown that the masses of both kinds of mesons agree with
Yukawa’s prediction as far as the order of magnitude is concerned. The heavier mesons, but not the
lighter ones (which are in reality muons), had an interaction with the nucleons about as strong as
Yukawa had postulated. The fact that particles of this kind have been found experimentally provided
a brilliant vindication of Yukawa’s fundamental ideas. The electric charge of both kinds of mesons
agreed with Yukawa’s prediction. It had also been experimentally confirmed, that the mesons could
exist only for a very short time. A heavy meson lives only for about one hundredth of a millionth of a
second and is then transformed into a light meson and probably a neutrino.

Soon afterward, accelerators of sufficient energy were creating pions, and other mesons, in the
laboratory under controlled conditions.

From its early prediction in 1934 until today, our knowledge of the mesons has evolved signifi-
cantly. In fact, now the mesons are classified as hadronic systems composed by quarks and antiquarks,
and gluons, bound together by the strong interaction. Their study is interesting not only for the un-
derstanding of the nuclear force (just as Yukawa predicted, mesons are the mediators of the nuclear
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force), but also to get more insight about the unique properties of the strong interaction, since meson
structure and spectrum is determined by the form of the confinement interaction, not exactly known
yet in detail.

The study of mesonic properties is carried out following roughly two main complementary the-
oretical approaches. The first one starts from the basic quark and gluon degrees of freedom, whose
interaction is described by the accepted framework of QCD. To go beyond a perturbative approach a
big theoretical effort is nowadays devoted to the understanding of the hadron structure using LQCD
calculations. This is a numerical approach that discretizes the evolution equations of QCD on a four-
dimensional space-time lattice space and solves them by means of Monte Carlo techniques. Here,
many important results have been obtained and more are expected in the future by the use of more
powerful computers. Nevertheless, the goal of simulations corresponding to the physical small pion
masses presumably will still require some time, and in the meanwhile one has to rely on models, even-
tually based on QCD or LQCD.

The second approach, which can be denoted as “phenomenological”, predicts hadron properties
that are “built” from theoretical frameworks based on general parameterizations of quarks and gluons
dynamics. The idea of quarks as constituent particles of hadrons was introduced in the 60’s, before
their experimental discovery. A large variety of models have been built and applied to describe hadron
properties. An important class is provided by CQM 2, in which quarks are considered as effective
internal degrees of freedom.

The modern version of the nonrelativistic CQM considers a confinement potential characterized
by a Coulomb-like term and a linear one, which is inspired on lattice calculations. In the last years,
CQM have been considerably refined to include further elements, related to spin-orbit, spin-spin and
tensor interactions, and in spite of their simplicity, they can feature a fairly good agreement with the
experimental results. In general, the different theoretical approaches are not sharply separated. On the
contrary, they are strongly interconnected.

Due to the non-Abelian characteristic of the strong interaction, also gluons are self-interacting
carriers of the force, which causes a very rich variety of hadron structures. Glueballs made entirely of
gluons, hybrids consisting on a qq̄ pair combined to an excited gluon, or multi-quarks states exist. A
clear and unambiguous observation of these states will be an important confirmation of the validity of
the theoretical framework. However, there is still much to be learned in descriptions of pure qq̄ states,
for solid steps into the knowledge of hybrids.

It is crucial to have good experimental results that open the door to a better understanding of the
systems under consideration.

The majority of results gathered until now have been obtained using e+e− colliders in experiments
like BaBar (Stanford), Belle (KEK), BES (Beijing), CLEO (Cornell). These, on one hand, have deter-
mined big progresses in the field, while, on the other hand, have discovered a large number of states
with properties that cannot be easily and exhaustively explained by any theory.

There are essentially two main active areas of research:

• Exotic States in the low energy regime;

• Heavy Mesons in the high energy domain.

Considering the first one, one of the first claim for the existence of a non qq̄ meson, namely a 1−+

resonance, was made by the BNL experiment E852 (ref.[14]). Similar results and confirmations were
then obtained by other experiments, for example in a recent paper from the COMPASS collaboration
(ref.[15]).

In order to overcome the limitations arising in the low energy region, the spectroscopy activity
has moved to higher energies. Large data sets have been collected at e+e− machines by BaBar, Belle,

2GM model belongs to this category.
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CLEO, and BES collaborations, but also the Tevatron experiments, CDF and D0, have contributed
significantly. Plenty of mesons of both kinds have been produced at e+e− machines studying different
processes:

• B-meson decays;

• inclusive charmonium (bottomonium) production;

• associate charmonium production;

• two photon collisions;

• initial state radiation.

In the near future, besides e+e− experiments other type of machines namely, hadronic machines
such as the LHC, will provide other results. While LHCb has been designed with the intention of
performing spectroscopic studies; ALICE, ATLAS and CMS can also provide additional results.

For the low energy region (below 2 GeV) a new set of data will be provided by the GlueX experi-
mental program (ref.[16]), foreseen for the upgraded 12 GeV JLAB machine.

Finally, probably the most ambitious and complete spectroscopy future project is represented by
the PANDA (ref.[17]) experiment at FAIR (ref.[18]). FAIR is a new international Facility for An-
tiproton and Ion Research under construction at GSI. In PANDA, a wide scientific program including
meson spectroscopy from light to charm quark sector, baryon/antibaryon production, charm in nu-
clei, and strangeness physics with particular attention to the systems with strangeness S = −2, will
be carry out. Antiproton-proton annihilations have proven to produce large quantities of exotic states
(ref.[19, 20]) with yields comparable to ordinary mesons. This is due to the fact that the annihilation
process create highly dense matter where gluons proliferate and multiply.
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Chapter 2

Nonrelativistic calculation of the meson
spectra

‘Sometimes attaining the deepest familiarity with a question is our best substitute for actually having
the answer.’

Brian Greene

In this chapter we will start with a very simple approach to the problem of modeling mesons:
we will treat them as simple valence quark-antiquark pairs interacting through a static potential in
a nonrelativistic regime. We are interested in computing the wavefunctions, the binding energies
and the corresponding mass spectra and, in order to do so, we will solve the familiar Nonrelativistic
Schrödinger Equation (NRSE). Already from such a relatively simple analysis, a number of interesting
conclusions can be drawn. But the main purpose of this study is that it serves as preparation for
later, more advanced calculations: by testing various numerical techniques in a more easily controlled
nonrelativistic environment it lays the groundwork for applications of the most successful numerical
methods in the more complicated, relativistic framework of the Covariant Spectator Theory.

The first natural question that arises when one proposes this type of description is whether it is
reasonable at all to describe mesons nonrelativistically, and if so in what energy regime. So, before
we proceed we will discuss this point by means of a simple estimate:

We can imagine, in a somewhat crude approximation, a meson as some kind of "confining" sphere
inside of which the constituent quark and the antiquark can move freely, but from which they cannot
escape. This way, the momentum and the position of a quark (antiquark) inside the meson are of the
order of

p = p̄±∆p

x = x̄±∆x
, (2.1)

where the bar on top of the variable means its average value and ∆ its uncertainty. If we place the
origin of our reference frame in the meson sphere’s center, the average momentum and position are
zero, so the order of magnitude is given by the respective uncertainties only:

p≈ ∆p

x≈ ∆x≡ R,
(2.2)

where the uncertainty of the quark’s position was identified with the "characteristic size" R of the
meson, in this case the radius of the corresponding sphere.
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2 Nonrelativistic calculation of the meson spectra

Considering now the Uncertainty Principle,

∆x∆p∼ h , (2.3)

we find the following relation:

p =
h
R
. (2.4)

Relativistic effects become important when a particle’s kinetic energy is no longer negligible com-
pared to the energy of its rest mass. So we have to find out under which conditions p2/2m becomes
comparable with mc2. Using the above estimate for the momentum we find

p2

2m
=

h2

2mR2 ∼ mc2 if R2 ∼ h2

2m2c2 .

Taking into account that an increasing radius R leads to a decrease of the kinetic energy, and
neglecting the unimportant factor of 2, we can express our result in terms of the Compton wavelength
λC = h/mc as follows:

• if R� λC, relativistic effects will not be very important;

• if R∼ λC, relativistic effects are not negligible;

• if R� λC, relativistic effects are large.

Here we have to distinguish between the current or bare mass m0, which refers to the mass of
the quark (antiquark) by itself, and the constituent mass m that refers to the current quark (antiquark)
mass plus the mass of the gluon fields surrounding it. An estimate of the constituent quark mass can
be found of by dividing the mass of a known meson by 2 or the mass of a nucleon by 3.

As a rough estimate for the typical size of a meson we can use

R∼ 1 f m . (2.5)

quark m0 (MeV/c2)
u 2.4
d 4.8
s 104
c 1270
b 4200
t 171200

Table 2.1: Bare quark masses ref.[22].

Comparing the values of tables 2.1 and 2.2 one notes that for the heavy-meson sector (cases c
and b), the constituent quark mass is closer to the bare quark mass than for the lighter sector (cases u,
d, and s), thus reflecting the larger "dressing" effects present in the latter.

We also see that the Compton wavelengths of u, d, s quarks (and antiquarks, which have the
same mass) are clearly larger than their characteristic size, and relativistic effects are important. The
b, and t 1 quarks have considerably smaller Compton wavelengths, which—according to our simple
estimate—allows us to treat them in a nonrelativistic approximation. The cc̄ mesons are in the tran-
sition zone, where moderate relativistic effects may be noticeable. However, they are usually also
treated as nonrelativistic systems.

1We did not consider the case tt̄ because it has a very reduced probability of appearing in Nature, as discussed in ref.
[23]. This is due to the very short lifetime of these particles that decay almost immediately after being produced.
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Particle q mh (MeV/c2) mq (MeV/c2) λC( f m)

n(uud) u 938.2 312.3 3.973
n(udd) d 939.6 313.7 3.955
φ(ss̄) s 1020 610 2.034
J/ψ(cc̄) c 3096.2 1548.1 0.8014
ϒ(bb̄) b 9460.4 4730.2 0.2623

Table 2.2: Constituent quark masses mq and corresponding Compton wavelengths λC for the quarks. In the first
and third columns we indicate the hadron and its mass mh (ref.[22]), from which we estimated the constituent
quark mass.

2.1 Solving the NRSE in r-space

The starting point for calculating the wavefunctions and eigenvalues of quarkonium states is the
time-independent Nonrelativistic Schrödinger Equation (NRSE) with a central potential:

H =
p2

1

2m1
+

p2
2

2m2
+V0 (|~r1−~r2|) =

P2

2M
+

p2

2µ
+V0 (|~r|) = Hcm +Hrel (2.6)

where we have separated the relative motion Hamiltonean Hrel from the center of mass Hamiltonean
Hcm:

Hcm =
P2

2M
, Hrel =

p2

2µ
+V0 (|~r|) ,

P = p1 + p2, p =
m1 p1−m2 p2

m1 +m2
,

~R =
m1~r1−m2~r2

m1 +m2
, ~r =~r1−~r2,

M = m1 +m2, µ =
m1m2

m1 +m2
.

(2.7)

and m1 ≡ mqi and m2 ≡ mq̄ j , for i, j = u,d,s,c,b, t.
In the center-of-mass frame, one obtains the coordinate space Schrödinger equation for the relative

motion only: [
−

∇2

2µ
+Vo(r)

]
ψ(~r) = Eψ(~r). (2.8)

For a radially symmetric potential the wavefunctions written in spherical coordinates are:

ψ(r,θ ,φ) = Rnl(r)Ylm(θ ,φ). (2.9)

The radial wavefunctions satisfy the equation[
−

1
2µ

(
∂ 2

∂ r2 +
2
r

∂

∂ r

)
+

l (l +1)
2µr2 +V0(r)

]
Rnl(r) = EnlRnl(r). (2.10)

We introduce as usual the reduced radial wavefunction

unl(r) = rRnl(r), (2.11)
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2 Nonrelativistic calculation of the meson spectra 2.1 Solving the NRSE in r-space

that are solutions of [
−

1
2µ

d2

dr2 +
l (l +1)

2µr2 +V0(r)

]
unl(r) = Enlunl(r), (2.12)

with the normalization condition∫
d3r |ψ(~r)|2 =

∫
dΩdrr2 (Rnl(r))

2 |Yml(θ ,φ)|2 = 1,∫
drr2 (Rnl(r))

2 =
∫

dr (unl(r))
2 = 1.

(2.13)

2.1.1 The Coulomb-plus-Linear Potential

Various quark interaction models have been used over the years. In the region tested by experi-
ments most of these models coincide, in their general form. Some models are purely phenomenolog-
ical (e.g. ref.[28]) and others are guided by perturbative QCD for its short-range part. Since color
charges are subject to confinement, a phenomenological long-range part has to be added to account
for confinement (e.g. see ref.[29],[30]). Indeed, in the limit of static quarks, the quark-anti-quark po-
tential from Nambu-Bethe-Salpeter amplitudes obtained in lattice QCD simulations suggest that the
interquark potential has a linear behaviour at large separation distances r (e.g. ref.[31]).

One of the most commonly used potentials is therefore the so called Coulomb-plus-Linear poten-
tial. The leading term of the quark-antiquark potential arising from a perturbative QCD calculation is
essentially Coulomb-like

V0,pert(r) =−
4αs

3r
, (2.14)

and the 4
3 factor comes from the color interaction.

For large distances, however,
Vcon f (r) = σr, (2.15)

is expected to be a reasonable choice for the long range part of the potential. The potential we use
in Eq.2.12 to obtain eigenvalues and wavefunctions for the qq̄ bound states will then be given by the
Coulomb-plus-Linear potential

V0(r) =V0,pert(r)+Vcon f (r)+C =−4αs

3r
+σr+C. (2.16)

The Coulomb-plus-linear potential (Fig.2.1), sometimes referred to as Cornell potential or funnel
potential, has first been proposed by the Cornell group (ref.[29],[30],[32]) to reproduce the charmo-
nium spectrum.

According to a recent LQCD lattice calculation (ref.[24]),

V (r) =−
A
r
+σr, A = 0.26, σ = 0.89GeV/ f m, C = 0. (2.17)

We explore in the next sections the two limiting cases of the Cornell potential: the Pure Linear
Potential and the Pure Coulomb-type Potential.

Pure Linear potential

We start with a pure linear potential of the form

V (r) = σr. (2.18)
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Figure 2.1: Coulomb-plus-Linear Potential with parameters αs = 0.3, σ = 1.0GeV/ f m.

Setting

ρ = r

(
1

2µσ

)−1/3

and εnl =
Enl

σ

(
1

2µσ

)−1/3

(2.19)

leads to the dimensionless equation

−
d2unl

dρ2 +

[
l(l +1)

ρ2 +ρ

]
unl = εnlunl . (2.20)

The boundary conditions imposed are that the wavefunction vanishes at the origin and at infinity,
i.e.,

unl(ρ = 0) = 0, unl(ρ = ∞) = 0. (2.21)

For the s-wave (l = 0) case, Eq.2.20 reduces to

−d2unl

dρ2 +ρunl = εnlunl (2.22)

that has the following analytic solution:

ul=0(ρ) = Ai(ρ− ε), (2.23)

where Ai is the well-known regular Airy function. The binding energies are:

εl=0 =−zn, (2.24)

and zn, for n=1,2,3.. are the zeros of the Airy function Ai.

For l 6= 0; there is not an analytic solution, so we have to solve Eq.2.20 numerically. The
procedure is explained in Appendix C.
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Pure Coulomb-type potential

This case is also interesting because it is very similar to the familiar problem of solving the
Schrödinger equation for the hydrogen atom, where the potential is given (in SI units) by:

V (r) =−
e2

4πε0

1
r
. (2.25)

The NRSE for the hydrogen atom is2

−
h̄2

2µ

d2

dr2 +

[
−

e2

4πε0

1
r
+

h̄2

2µ

l(l +1)
r2

]
u = Eu . (2.26)

Setting

κ ≡
√
−2µE

h̄
, ρ ≡ κr, ρ0 ≡

µe2

2πε0κ
(2.27)

we find the dimensionless equation

d2unl

dρ2 =

[
1−

ρ0

ρ
+

l(l +1)
ρ2

]
unl . (2.28)

Once again, in order to solve this equation we used the method explained in Appendix C.

2.1.2 Results

In the case of a pure linear potential, table 2.3 shows our numerical results for the first 3 partial
waves, and in each case for the lowest 5 energy states. The s-wave results are compared to the exact
solutions, and one can see that they match for the first 3 states up to the sixth decimal place. As
expected, the agreement deteriorates for the higher excited states, but globally our numerical method
appears to be efficient.

The corresponding wavefunctions are displayed in figs. 2.2–2.5. We make the following observa-
tions:

1. They show the usual pattern that each step higher in the radial excitation level n increases the
number of nodes in the wavefunction by one; the appearance of nodes makes different radial
states orthogonal, as they should.

2. Fig.2.5 exhibits clearly that for a given radial excitation n the wavefunction components corre-
sponding to increasing values of angular momentum l extend to larger and larger distances in
configuration space, confirming that the higher l the more peripheral a state is.

The calculations of the energy levels of the hydrogen atom served to test the accuracy of our
method for higher partial waves than l = 0. This pure Coulomb case is convenient because all energy
levels are known analytically. We see from table 2.4 that the agreement of our numerical results with
the exact ones is not as good as for the linear potential, but they are still satisfactory for the level
of accuracy we are interested in. We can conclude that our method is reliable also for higher partial
waves. For the case of the interaction between quarks in a meson, the Coulomb potential has its

2Here µ is the reduced mass of the electron-proton system. In the meson problem µ is the reduced mass of the qq̄ pair.
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origin not in the electromagnetic but in the strong interaction. The corresponding NRSE is obtained

by simply replacing −
e2

4πε0
→ A , where A is a constant describing the strength of the potential.

Next, in tables 2.5, 2.6 and 2.7 we make a comparison between our predicted meson masses and
the experimental observed ones. The mass spectrum was obtained from the eigenvalues through the
relation valid for the linear potential case:

Mmeson = mqi +mq̄ j +Enl = mqi +mq̄ j + εnlσ

(
h̄2

2µσ

)1/3

. (2.29)

Naturally, some states cannot be predicted from our simple model because it does not include any
treatment of the spin or isospin dependence of the interation, neither any other fine structure effects.
For instance, we cannot distinguish between a 11S0 state (corresponding to ηc(1S)), from a 13S1 state
(corresponding to J/Ψ(1S)).

To overcome this, and in order to make a comparison between our predictions and the experimen-
tal results, we grouped mesons with the same radial-n and angular momentum l-states together and
represented them as an “average meson” with a mass and a width taken as the mean and the standard
deviation of the meson masses in the group. We define ∆ as the relative difference of our predictions
from this "averaged" meson (meson*), which is labeled by its spectroscopic features, 1Sexp,1Pexp,
2Pexp, etc. ...

The pure linear potential parameters could be fixed by performing a fit to each flavor case, by the
least mean squares method. We obtained:

• bottomonium: σ=0.18GeV/ f m

• charmonium: σ=0.154GeV/ f m;

• mixed-flavor mesons (bc̄, bs̄, cs̄): σ=0.179GeV/ f m,

The results obtained show that the agreement with experiments worsens for the mesons composed
of lighter quarks. For the bottomonium the deviations are always less than 4% whereas for the mesons
of charm+strange type the deviations may reach 40%. It is also worth noticing that we have different
σ parameters for different flavor cases, but, at the same time, the heavy meson sector is expected
not to be sensitive to the linear part of the potential since the heavy mesons are deeply bound. Is
there a contradiction? No, because our calculations did not include the Coulomb-like potential or
funnel behavior, and this interaction term is increasingly important as the quarks get heavier. Thus,
the varying slope of the Coulomb-like potential, as one goes nearer and nearer the origin r ≈ 0, can
only be "mocked" up with different linear potentials. Naturally, the largest slope σ is found for the
bottomonium case, the most strongly bound meson. The lesson to be learnt is that the heavy-meson
spectrum is not suitable to fix the confinement strength alone. The Coulomb-like part is to be included
in the interaction, and importantly, the light meson sector has to be considered in the fit. For this a
relativistic treatment is unavoidable, as we discussed already.
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Eigenvalue Exact l = 0 l = 1 l = 2
ε1l 2.338107 2.338107 3.361254 4.248182
ε2l 4.087949 4.087949 4.884452 5.629709
ε3l 5.520560 5.520560 6.207632 6.868961
ε4l 6.786708 6.786793 7.406265 8.012763
ε5l 7.944134 7.947376 8.528377 9.117374

Table 2.3: Results for the eigenvalues εn0 of the NRSE in configuration space with a linear potential. The
column labeled "Exact" for l = 0 shows the zeros of the Airy function (with the opposite sign), the other results
were calculated numerically with the method described in Appendix C, for a mesh of 2000 points.

Figure 2.2: Wavefunctions of the first four l = 0 energy states of the NRSE equation with a pure linear potential.
The blue line represents the case n = 1, red n = 2, yellow n = 3, and green n = 4. The parameters used were:
σ = 1.0GeV/ f m and m1 = m2 = mb = 4.65GeV/c2.

Figure 2.3: Wavefunctions of the first four l = 1 energy states of the NRSE equation with a pure linear potential.
The blue line represents the case n = 1, red n = 2, yellow n = 3, and green n = 4. The parameters used were:
σ = 1.0GeV/ f m and m1 = m2 = mb = 4.65GeV/c2.
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Figure 2.4: Wavefunctions of the first four l = 0 energy states of the NRSE equation with a pure linear potential.
The blue line represents the case n = 1, red n = 2, yellow n = 3, and green n = 4. The parameters used were:
σ = 1.0GeV/ f m and m1 = m2 = mb = 4.65GeV/c2.

Figure 2.5: Comparison of the wavefunctions with n = 1 for l = 0 l = 1 and l = 2 (from left to right). The
parameters used were: σ = 1.0GeV/ f m and m1 = m2 = mb = 4.65GeV/c2.

Ei (eV) l = 0 l = 1 l = 2 l = 0 l = 1 l = 2
E1 -13.6057 - - -13.6066 - -
E2 -3.04142 -3.04142 - -3.04165 -3.04166 -
E3 -1.51174 -1.51174 -1.51174 -1.51185 -1.51184 -1.51185
E4 -0.85036 -0.85036 -0.85036 -0.85041 -0.85042 -0.85042
E5 -0.54423 -0.54423 -0.54423 -0.54466 -0.54468 -0.54462

Table 2.4: Results of the NRSE in configuration space with a Coulomb potential. The energy levels are
calculated for the hydrogen atom. On the left side we list the exact values (see ref.[21]) and on the right our
numerical results.
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Meson (ref. [26]) mexp.(GeV/c2) Meson∗ mexp.(GeV/c2) mpred.(GeV/c2) ∆(%)

ηb(1S) 9.3909±0.0003
ϒ(1S) 9.4603±0.0003 1Sexp 9.4256±0.0347 9.7560 3.5
χb0(1P) 9.8594±0.0004
χb1(1P) 9.89828±0.00026
hb(1P) 9.8986±0.0014 1Pexp 9.89212±0.03272 9.9555 0.6
χb2(1P) 9.9122±0.0003
ϒ(2S) 10.0233±0.0003 2Sexp 10.0233±0.0003 10.0972 0.3
ϒ(1D) 10.1637±0.0014 1Dexp 10.1637±0.0014 10.1285 0.7
χb0(2P) 10.2325±0.0040
χb1(2P) 10.25546±0.0002 2Pexp 10.2522±0.4 10.5106 2.5
χb2(2P) 1.026865±0.0002
ϒ(3S) 10.3552±0.0050 3Sexp 10.3552±0.0050 10.3766 0.2
ϒ(4S)/ϒ(10580) 10.5794±0.0012
ϒ(10860) 10.876±0.011 3Sexp 10.8211±0.2417 10.6236 1.8
ϒ(11020) 11.019±0.008

Table 2.5: Experimental mass spectra of bottomonium (mesons composed of bb̄).

Meson (ref.[26]) mexp.(GeV/c2) Meson∗ mexp.(GeV/c2) mpred.(GeV/c2) ∆(%)

ηc(1S) 2.981±0.0001
J/ψ(1S) 3.096916±0.000001 1Sexp 3.0390±0.0580 3.1691 4.2
χc0(1P) 3.41475±0.00031
χc1(1P) 3.51066±0.00007
hc(1P) 3.52541±0.00016 1Pexp 3.50176±0.08701 3.44002 1.8
χc2(1P) 3.5562±0.0001
ηc(2S) 3.6389±0.0013
ψ(2S) 3.686109±0.000130 2Sexp 3.662505±0.023605 3.63244 0.8
ψ(3770) 3.77315±0.00033 ?
χc2(2P) 3.9272±0.0026 2Sexp 3.850175±0.07703 3.843340 0.2
ψ(4040) 4.039±0.001 ?
ψ(4160) 4.153±0.003 ? 3Pexp 4.096±0.057 4.0118 2.1
X(4260) 4.253±0.009 ?
X(4360) 4.361±0.013 ?
ψ(4415) 4.421±0.004 ?
X(4660) 4.664±0.012 ?

Table 2.6: Experimental mass spectra of charmonium (mesons composed of cc̄).
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2 Nonrelativistic calculation of the meson spectra 2.2 Solving the NRSE in p-space

Meson (ref.[26]) mexp.(GeV/c2) Meson∗ mexp.(GeV/c2) mpred.(GeV/c2) ∆(%)

bottom+charm
B±c 6.277±0.006 Bc̄exp 6.277±0.006 6.668 5.9
bottom+strange
B0

s 5.36677±0.00024
B∗s 5.4154±0.0023 Bs̄exp 5.613±0.246 6.386 12.1
B0

s1(5830) 5.8294±0.0007
B∗0s2 (5840) 5.8397±0.0006
charm+strange
D±s 1.96849±0.00032
D∗±s 2.1123±0.0005 D0exp 2.1324±0.1845 3.0390 29.8
D∗s0

(2317) 2.3178±0.0006
D±s1

(2460) 2.4596±0.0006
Ds1(2536) 2.53512±0.00013 D1exp 2.49736±0.0378 3.7694 33.7
D∗s2

(2573) 2.5719±0.0008 D2exp 2.5719±0.0008 4.2881 40.0

Table 2.7: Experimental mass spectra of mixed-composed mesons (bottom+ charm, bottom+ strange and
charm+ strange).

2.2 Solving the NRSE in p-space

In the last section, the NRSE was solved numerically in configuration space for two interesting
types of potentials. In this section we will solve the same equation again, but this time in momentum
space. There are three main reasons to invest some time and effort in this problem:

1. Generalization to the relativistic case: When we try to attack the problem of bound-states rel-
ativistically it is much easier to do so in momentum space, where retardation and non-locality
effects are better handled. For example, even the most straightforward relativistic generalization
of the kinetic-energy operator is very cumbersome in configuration space, but rather simple in
momentum space (ref.[27]).

2. Intermediate step before the study of a specific covariant model: Certain aspects of the covari-
ant model we want to apply in a later stage are built in close analogy with the nonrelativistic
case. For instance, the precise definition of the linear potential, when one moves from configu-
ration to momentum space, is very subtle, and it is useful to learn how to do it properly in the
nonrelativistic regime first and then move to a covariant framework.

3. Possibility of testing new numerical methods: Since the binding energies calculated in momen-
tum space must be the same as the ones we already obtained in configuration space, we are able
to test the accuracy of our numerical methods. It is also a very instructive exercise in another
aspect: the technical difficulties that appear in the nonrelativistic case, namely the appearance of
singularities, are the same as in the relativistic case. By using a nonrelativistic framework first
we can study them in isolation, without having to deal with additional complications of purely
relativistic origin (negative-energy solutions, etc...).
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2 Nonrelativistic calculation of the meson spectra 2.2 Solving the NRSE in p-space

2.2.1 Finding a "suitable" linear potential in momentum space

In this section we are interested in preparing the path for a relativistic generalization of our model
of mesons. To accomplish that, just as argued above, we need to move to momentum space. In the
next and subsequent chapters, we will then be able to study mesons in a covariant manner, following
the core ideas of the Covariant Spectator Theory (CST) and, more specifically, the model developed
by Gross and Milana (ref.[3]). In their model they use a linear confining potential to represent the
interquark interaction. Thus, the first challenge is to understand how to convert the well-known linear
potential in configuration space into an equivalent form in momentum space. However there is a
problem since the linear potential 3

Ṽ (r) = σr (2.30)

cannot be Fourier-transformed into momentum space because the corresponding integral does not
exist. Instead, one can start with the screened potential

ṼS,ε(r) = σre−εr = σ
∂ 2

∂ε2

e−εr

r
, (2.31)

which turns into the linear potential in the limit ε → 0. Its Fourier transform is

VS,ε(q) =
∫

d3reiq.rṼS,ε(r) = σ
∂ 2

∂ε2

∫
d3reiq.r e−εr

r

=−
8πσ

(q2 + ε2)2 +
32πσε2

(q2 + ε2)3.

(2.32)

We define the two separate terms as

VA,ε(q) =−
8πσ

(q2 + ε2)2, VB,ε(q) =
32πσε2

(q2 + ε2)3. (2.33)

The inverse transform reproduces of course the original coordinate-space potential.

∫ d3q

(2π)3e−iq.rVs,ε(q) = Ṽs,ε(r). (2.34)

In particular since Ṽs,ε(0) = 0, we get the condition

∫ d3q

(2π)3Vs,ε(q) = 0. (2.35)

One might be tempted to take the limit ε → 0 immediately in VA,ε and VB,ε . This can be done without
problems for VA,ε ,

lim
ε→0

VA,ε(q)≡VA(q) =−
8πσ

q4 , (2.36)

but for VB,ε the situation is slightly more complicated:

lim
ε→0

VB,ε(q)≡VB(q) =

{
0, q 6= 0
∞, q = 0

(2.37)

3In this section, the tilde distinguishes the configuration-space from the momentum-space potential.
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2 Nonrelativistic calculation of the meson spectra 2.2 Solving the NRSE in p-space

VB,ε has properties similar to those of a delta function, although not exactly.4

It is instructive to transform VA,ε(q) and VB,ε(q) back to coordinate space. We obtain

ṼA,ε(r) =
∫ d3q

(2π)3e−iq.rVA,ε(q) =−
σ

ε
e−εr, (2.38)

and

ṼB,ε(r) =
∫ d3q

(2π)3e−iq.rVB,ε(q) =

(
σ

ε
+σr

)
e−εr. (2.39)

Clearly the sum of ṼA,ε and ṼB,ε reproduces ṼS,ε . Expanding the exponentials for small ε one gets

ṼA,ε(r)+ṼB,ε(r) =

[
−

σ

ε
+σr+O(ε)

]
+

[
σ

ε
+σr−σr+O(ε)

]
, (2.40)

from which we can see that (i) the behavior linear in r emerges from ṼA,ε , and not from ṼB,ε(r)

as a superficial look at eq. (2.39) might suggest; and (ii) that the role of ṼB,ε(r) is to provide a
σ

ε
that

cancels the constant −
σ

ε
in ṼA,ε(r).

We can conclude that ṼB,ε(r) can be replaced by any other function that behaves for small ε like
σ/ε +O(ε) to obtain the same limit. The simplest and obvious choice is

ṼC,ε(r) =
σ

ε
, (2.41)

and we define a new screened linear potential

ṼL,ε(r) = ṼA,ε(r)+ṼC,ε(r) =
σ

ε

(
1− e−εr) , (2.42)

which we can also write as
ṼL,ε(r) = ṼA,ε(r)−ṼA,ε(0). (2.43)

Fig.(2.6) illustrates the qualitative bahaviour of the various r-space potentials for a finite value of
ε.

One could have started out directly by proposing Eq. (2.42) as screened linear potential. How-
ever, the detour through Eq.(2.31) was useful because it motivates the structure in which a singular
potential is regularized by a subtraction term, both in r−space, as in Eq.(2.43), and in momentum
space, which we will derive shortly.

There is an important argument why the form of Eq.(2.42) is preferable over Eq.(2.31): as long as
ε is kept finite (and it may later turn out necessary not to go completely to the limit ε→ 0), ṼL,ε(r) can
have real bound states, while in the case of ṼS,ε(r) barrier penetration prevents that rigorous bound
states can be formed.

4One definition of the δ (x) function is δ (x) = limε→0
1
π

ε

ε2 + x2, which differs from Eq.2.33.
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Figure 2.6: Sketches of the various ε−dependent coordinate-space potentials.

Now the momentum-space form of our new screened linear potential can be written down:

VL,ε(q) =
∫

d3rṼL,ε(r)eiq.r

=
∫

d3r
[
ṼA,ε(r)−ṼA,ε(0)

]
eiq.r

=
∫

d3rṼA,ε(r)eiq.r− (2π)3
δ
(3)(q)ṼA,ε(0)

=VA,ε(q)− (2π)3
δ
(3)(q)

∫ d3q′

(2π)3VA,ε(q′).

(2.44)

If one takes the limit ε→ 0 here, one gets a potential that is singular at q = 0, but with a "built-in"’
subtraction that regularizes integrations over the singularity.

VL(q) = lim
ε→0

[
VA,ε(q)− (2π)3

δ
(3)(q)

∫ d3q′

(2π)3VA,ε(q′)

]

=VA(q)− (2π)3
δ
(3)(q)

∫ d3q′

(2π)3VA(q′).

This form of the potential prevents the existence of a barrier penetrating effect, leading to non-
zero decay width instead of true bound-states. Moreover, it has a practical advantage: in numerical
calculations there is no need for a finite screening parameter ε and therefore we do not have to perform
studies of the convergence of the results with decreasing values of ε .

2.2.2 The partial-wave decomposition

The next step is to write down a version of the NRSE equation in momentum space that allow us to
calculate all states of the mesonic spectra with non-zero orbital angular momentum. This implies that
we have to decompose the momentum-space Schrödinger equation into partial waves for the linear
potential

VL(q) = lim
ε→0

[
VA(q)− (2π)3

δ
(3)(q)

∫ d3q′

(2π)3VA(q′)
]
, (2.45)
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where q is the momentum transfer, and from here on we drop the ε from VA,ε in favor of the simplified
notation

VA(q) =−
8πσ

(q2 + ε2)2 . (2.46)

With this potential, the Schrödinger equation becomes

p2

2mR
〈p|ψ〉+

∫ d3k
(2π)3 〈p|VL|k〉〈k|ψ〉= E〈p|ψ〉 , (2.47)

or, after substituting (2.45),

p2

2mR
〈p|ψ〉+

∫ d3k
(2π)3 〈p|VA|k〉(〈k|ψ〉−〈p|ψ〉) = E〈p|ψ〉 . (2.48)

The limit ε → 0 can be performed, and we see that the matrix element of VA,

〈p|VA|k〉=−
8πσ

(k−p)4 =− 8πσ

(k2 + p2−2pkx)2 =VA(p,k,x) , (2.49)

with x = k̂ · p̂, depends only on the magnitudes k and p and the angle between k and p. Such a function
can be expanded into a series of Legendre polynomials,

VA(p,k,x) =
∞

∑
n=0

cn(p,k)Pn(x) . (2.50)

The expansion coefficients can be deduced using the orthogonality relation∫ 1

−1
dxPn(x)Pn′(x) =

2
2n+1

δnn′ . (2.51)

They are given through

cn(p,k) =
2n+1

2

∫ 1

−1
dxPn(x)VA(p,k,x) . (2.52)

In this context, it is useful to rewrite the expansion in terms of spherical harmonics, applying the
addition theorem

Pn(k̂ · p̂) =
4π

2n+1

n

∑
mn=−n

Y ∗nmn
(k̂)Ynmn(p̂) . (2.53)

Now we can write

〈p|VA|k〉=VA(p,k,x) = ∑
nmn

4π

2n+1
cn(p,k)Y ∗nmn

(k̂)Ynmn(p̂) , (2.54)

or, after redefining the expansion coefficient through

〈pnmn|VA|k nmn〉=
4π

2n+1
cn(p,k) = 2π

∫ 1

−1
dxPn(x)VA(p,k,x) , (2.55)

we get
〈p|VA|k〉= ∑

nmn

〈pnmn|VA|k nmn〉Y ∗nmn
(k̂)Ynmn(p̂) . (2.56)

Next, we also expand the wave function into spherical harmonics,

〈p|ψ〉= ∑
l′m′
〈p̂|l′m′〉〈pl′m′|ψ〉= ∑

l′m′
Yl′m′(p̂)〈pl′m′|ψ〉

〈k|ψ〉= ∑
l1m1

〈k̂|l1m1〉〈pl1m1|ψ〉= ∑
l1m1

Yl1m1(k̂)〈k l1m1|ψ〉 . (2.57)
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Substituting these expansions into (2.48), we obtain

p2

2mR
∑
l′m′

Yl′m′(p̂)〈pl′m′|ψ〉+
∫ d3k

(2π)3 ∑
nmn

〈pnmn|VA|k nmn〉Y ∗nmn
(k̂)Ynmn(p̂)

×

(
∑
l1m1

Yl1m1(k̂)〈k l1m1|ψ〉−∑
l′m′

Yl′m′(p̂)〈pl′m′|ψ〉

)
= E ∑

l′m′
Yl′m′(p̂)〈pl′m′|ψ〉 . (2.58)

It is convenient to separate the integrand into two parts, which will then be treated individually.

p2

2mR
∑
l′m′

Yl′m′(p̂)〈pl′m′|ψ〉+ ∑
l1m1

∑
nmn

∫
∞

0

dkk2

(2π)3

∫
dk̂〈pnmn|VA|k nmn〉

Y ∗nmn
(k̂)Ynmn(p̂)Yl1m1(k̂)〈k l1m1|ψ〉−∑

l′m′
∑
nmn

∫
∞

0

dkk2

(2π)3

∫
dk̂〈pnmn|VA|k nmn〉

Y ∗nmn
(k̂)Ynmn(p̂)Yl′m′(p̂)〈pl′m′|ψ〉= E ∑

l′m′
Yl′m′(p̂)〈pl′m′|ψ〉 . (2.59)

In the first integrand, we use the orthogonality relation for spherical harmonics,∫
dk̂Y ∗nmn

(k̂)Yl1m1(k̂) = δnl1δmnm1 , (2.60)

and in the second we use Y00(k̂) = 1/
√

4π to write∫
dk̂Y ∗nmn

(k̂) =
√

4π

∫
dk̂Y ∗nmn

(k̂)Y00(k̂) = δn0δmn0 . (2.61)

The sums over n and mn can be carried out and give

p2

2mR
∑
l′m′

Yl′m′(p̂)〈pl′m′|ψ〉+ ∑
l1m1

∫
∞

0

dkk2

(2π)3 〈pl1m1|VA|k l1m1〉Yl1m1(p̂)〈k l1m1|ψ〉

−∑
l′m′

∫
∞

0

dkk2

(2π)3 〈p00|VA|k 00〉
√

4πY00(p̂)Yl′m′(p̂)〈pl′m′|ψ〉= E ∑
l′m′

Yl′m′(p̂)〈pl′m′|ψ〉 . (2.62)

In the second integrand, we can simplify again with
√

4πY00(p̂) = 1.

In order to project out the partial wave {lm}, we multiply this equation by Y ∗lm(p̂) and integrate
over p̂. Orthogonality then yields

p2

2mR
〈plm|ψ〉+

∫
∞

0

dkk2

(2π)3 (〈plm|VA|k lm〉〈k lm|ψ〉−〈p00|VA|k 00〉〈plm|ψ〉) = E〈plm|ψ〉 . (2.63)

The potential VA in partial-wave form

We need the partial-wave matrix elements

〈plm|VA|k lm〉= 2π

∫ 1

−1
dxPl(x)VA(p,k,x) = 2π(−8πσ)

∫ 1

−1
dx

Pl(x)
(k2 + p2−2pkx)2

= 2π
−8πσ

(2pk)2

∫ 1

−1
dx

Pl(x)

( k2+p2

2pk − x)2
. (2.64)
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Introducing

y =
p2 + k2

2pk
, (2.65)

and using the Legendre functions of the second kind,

Ql(y) =
1
2

∫ 1

−1
dx

Pl(x)
y− x

, (2.66)

we can write ∫ 1

−1
dx

Pl(x)
(y− x)2 =− ∂

∂y

∫ 1

−1
dx

Pl(x)
y− x

=− ∂

∂y
2Ql(y) =−2Q′l(y) . (2.67)

Let us calculate the case l = 0 explicitly:

Q0(y) =
1
2

ln
∣∣∣∣y+1
y−1

∣∣∣∣= 1
2

ln
(

p+ k
p− k

)2

, (2.68)

and

Q′0(y) =
1

1− y2 =− 4p2k2

(p2− k2)2 . (2.69)

Clearly, both Q0(y) and Q′0(y) are singular at k = p. In fact, when we go to l 6= 0, the only terms
singular at k = p (y = 1) come from Q0(y) and Q′0(y), which one can see from

Ql(y) = Pl(y)Q0(y)−wl−1(y) , (2.70)

where

wl−1(y) =
l

∑
m=1

1
m

Pl−m(y)Pm−1(y) (2.71)

is non-singular and contributes only for l ≥ 1. The first few cases are

• l = 1 : w0(y) = 1,

• l = 2 : w1(y) = 3
2 y,

• l = 3 : w2(y) = 5
2 y2− 2

3 ,

• l = 4 : w3(y) = 35
8 y3− 55

24 y.

Putting everything together, we get

〈plm|VA|k lm〉= 2π
−8πσ

(2pk)2 (−2)
[
P′l (y)Q0(y)+Pl(y)Q′0(y)−w′l−1(y)

]
= 2π(−8πσ)

[
2Pl(y)

(p2− k2)2 −
P′l (y)

(2pk)2 ln
(

p+ k
p− k

)2

+
2w′l−1(y)

(2pk)2

]
. (2.72)

Substituting Eq.(2.72) into the partial-wave Schrödinger Eq.(2.63), and using the notation ψl(p) =
〈plm|ψ〉 (note that the equation is independent of m because of rotational symmetry), yields

p2

2mR
ψl(p)− 2σ

π

∫
∞

0
dk

{
Q′0(y) [Pl(y)ψl(k)−ψl(p)]+P′l (y)Q0(y)ψl(k)

−w′l−1(y)ψl(k)

}
= Eψl(p) . (2.73)
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or, more explicitly,

p2

2mR
ψl(p)− 2σ

π

∫
∞

0
dk

{
2k2

(k2− p2)2 [Pl(y)ψl(k)−ψl(p)]+
w′l−1(y)

2p2 ψl(k)

− 1
4p2 ln

(
p+ k
p− k

)2

P′l (y)ψl(k)

}
= Eψl(p) . (2.74)

In the following, we list a few important cases of the potential matrix elements and the resulting
Schrödinger equation.

S-wave:

〈p00|VA|k 00〉= 2π(−8πσ)
2

(p2− k2)2 , (2.75)

p2

2mR
ψ0(p)− 4σ

π

∫
∞

0
dkk2 ψ0(k)−ψ0(p)

(p2− k2)2 = Eψ0(p) (2.76)

P-wave:

〈p1m|VA|k 1m〉= 2π(−8πσ)

[
p2 + k2

2pk
2

(p2− k2)2 −
1

(2pk)2 ln
(

p+ k
p− k

)2
]

(2.77)

p2

2mR
ψ1(p)− 2σ

π

∫
∞

0
dk

{
2k2

(p2− k2)2

[
p2 + k2

2pk
ψ1(k)−ψ1(p)

]
−

1
4p2 ln

(
p+ k
p− k

)2

ψ1(k)

}
= Eψ1(p) (2.78)

D-wave:

〈p2m|VA|k 2m〉= 2π(−8πσ)

[(
3(p2 + k2)2

(2pk)2 −1
)

1

(p2− k2)2 +
3

(2pk)2−

−
3
(

p2 + k2
)

(2pk)3 ln
(

p+ k
p− k

)2
]

(2.79)

p2

2mR
ψ2(p)− 2σ

π

∫
∞

0
dk

{
2k2

(p2− k2)2

[
1
2

(
3(p2 + k2)2

(2pk)2 −1
)

ψ2(k)−ψ2(p)
]
+

+
3

4p2 ψ2(k)−
3

4p2

(
p2 + k2

2pk

)
ln
(

p+ k
p− k

)2

ψ2(k)

}
= Eψ2(p) (2.80)

In each case, the integral over k in the Schrödinger equation is to be understood as a principal value
integral.
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2.2.3 Two methods to deal with the singularities

Singularity-free integral equations

The kernel of Eq. (2.74) is singular at k = p. The first term of the integrand appears to have a
double pole, but because the numerator goes to zero like (k− p), as we will see, it is actually a single
pole and the principal value integral exists. The singularity in the log-term is integrable even in the
sense of an ordinary integral.

There exist standard numerical methods to solve integral equations with principal-value type sin-
gularities. However, they require special care and typically also more computing time. From the prac-
tical point of view it would be a considerable advantage to eliminate those singularities altogether. We
will show now that this can be achieved by means of subtraction methods.

Removal of the principal value singularity

In this section we will outline the main steps required to remove the singularities. In the following
it is important to distinguish between the ordinary integral and the Cauchy principal value integral,
denoted here by the symbol "−

∫
".

Thus, considering the most singular part of Eq.(2.74), which appears in

I1 ≡−
∫

∞

0
dk

2k2

(k2− p2)2 [Pl(y)ψl(k)−ψl(p)] . (2.81)

We expand the factor in brackets in a Taylor series around k = p:

Pl(y)ψl(k)−ψl(p) =ψl(p)+(k− p)
[

P′l (y)
dy
dk

ψl(k)+Pl(y)ψ ′l (k)
]

k=p
+

+(k− p)2Rl(k)−ψl(p) =(k− p)ψ ′l (p)+(k− p)2Rl(k) . (2.82)

Here we have used that y = 1 when k = p, Pl(1) = 1, P′l (1) = l(l + 1)/2, and dy
dk |k=p = 0. The

function Rl(k) is the remainder of the Taylor series of ψl(k) around k = p after the constant and linear
terms have been subtracted and (k− p)2 has been factored out. The only important property of Rl(k)
in this context is that it is finite at k = p.

The integrand of Eq.(2.81) can thus be written as

2k2

(k2− p2)2 [Pl(y)ψl(k)−ψl(p)] =
2k2

(k+ p)2
ψ ′l (p)
k− p

+
2k2Rl(k)
(k+ p)2 , (2.83)

and in this form it is now explicit that the singularity is just a simple pole. We can rewrite it as

2k2

(k2− p2)2 [Pl(y)ψl(k)−ψl(p)] =
ψ ′l (p)

k2− p2
2k2

k+ p
+

2k2Rl(k)
(k+ p)2 (2.84)

=
ψ ′l (p)

k2− p2

[
2k2

k+ p
− p+ p

]
+

2k2Rl(k)
(k+ p)2 (2.85)

=
pψ ′l (p)
k2− p2 +

ψ ′l (p)
k2− p2

[
(k− p)(2k+ p)

k+ p

]
+

2k2Rl(k)
(k+ p)2 (2.86)

=
pψ ′l (p)
k2− p2 +ψ

′
l (p)

2k+ p
(k+ p)2 +

2k2Rl(k)
(k+ p)2 . (2.87)
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2 Nonrelativistic calculation of the meson spectra 2.2 Solving the NRSE in p-space

The point of this reorganization is that the integrand is now separated into a singular term that
can be integrated analytically and a non-singular remainder. We can write

I1 =
∫

∞

0
dk
{

2k2

(k2− p2)2 [Pl(y)ψl(k)−ψl(p)]−
pψ ′l (p)
k2− p2

}
+ pψ

′
l (p)−

∫
∞

0

dk
k2− p2 , (2.88)

and applying the well-known result

−
∫

∞

0

dk
k2− p2 = 0 (2.89)

we arrive at

I1 =
∫

∞

0

dk
k2− p2

{
2k2

k2− p2 [Pl(y)ψl(k)−ψl(p)]− pψ
′
l (p)

}
. (2.90)

Note that the modified integrand is now regular at k = p, and Eq.(2.90) is no longer a principal-
value but an ordinary integral. The price to pay for this simplification is that the derivative of the wave
function enters the integrand. However, this is no significant complication if the method of solving
the integral equation uses an expansion of ψl(p) into a set of basis functions whose derivatives can be
easily calculated.

Subtraction of the logarithmic singularity

The second singular integrand occurs in

I2 ≡−
1

4p2

∫
∞

0
dk ln

(
p+ k
p− k

)2

P′l (y)ψl(k) =−
1

2p2

∫
∞

0
dk Q0(y)P′l (y)ψl(k) . (2.91)

In this case, we can take advantage of the known result∫
∞

0
dk

Q0(y)
k

=
π2

2
. (2.92)

We can bring I2 into the following form:

I2 =−
1

2p2

∫
∞

0
dk Q0(y)

[
P′l (y)ψl(k)−

p
k

P′l (1)ψl(p)+
p
k

P′l (1)ψl(p)
]

(2.93)

=− 1
2p2

∫
∞

0
dk Q0(y)

[
P′l (y)ψl(k)−

p
k

l(l +1)
2

ψl(p)
]
− 1

2p2
pl(l +1)

2
ψl(p)

∫
∞

0
dk

Q0(y)
k

(2.94)

=− 1
2p2

∫
∞

0
dk Q0(y)

[
P′l (y)ψl(k)−

p
k

l(l +1)
2

ψl(p)
]
− π2l(l +1)

8p
ψl(p) . (2.95)

It is easy to see that the factor in brackets in the integrand is proportional to (k− p) near k = p,
such that the product (k− p)Q0(y) goes to zero at that point. The subtracted integrand is therefore
also non-singular.

Singularity-free form of the partial wave Schrödinger equation

Substitution of the reorganized forms for I1 and I2 into the partial wave Schrödinger Eq.(2.74)
gives us the final result
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[
p2

2mR
+

σπl(l +1)
4p

]
ψl(p)− 2σ

π

∫
∞

0
dk
{

1
k2− p2

[
2k2

k2− p2

(
Pl(y)ψl(k)−ψl(p)

)
− pψ

′
l (p)

]
+

+
w′l−1(y)

2p2 ψl(k)−
1

4p2 ln
(

p+ k
p− k

)2

×
[

P′l (y)ψl(k)−
l(l +1)

2
p
k

ψl(p)
]}

= Eψl(p) . (2.96)

We list again the most important cases:

S-wave:

p2

2mR
ψ0(p)− 2σ

π

∫
∞

0

dk
k2− p2

[
2k2

k2− p2

(
ψ0(k)−ψ0(p)

)
− pψ

′
0(p)

]
= Eψ0(p) . (2.97)

P-wave: [
p2

2mR
+

πσ

2p

]
ψ1(p)− 2σ

π

∫
∞

0
dk
{

1
k2− p2

[
2k2

k2− p2

(
p2 + k2

2pk
ψ1(k)−ψ1(p)

)
− pψ

′
1(p)

]
− 1

4p2 ln
(

p+ k
p− k

)2 [
ψ1(k)−

p
k

ψ1(p)
]}

= Eψ1(p) . (2.98)

D-wave: [
p2

2mR
+

3πσ

2p

]
ψ2(p)−

− 2σ

π

∫
∞

0
dk

{
1

k2− p2

[
2k2

k2− p2

(
1
2

(
3
(

p2 + k2

2pk

)2

−1

)
ψ2(k)−ψ2(p)

)
− pψ

′
2(p)

]

+
3

4p2 ψ2(k)−
3

4p2 ln
(

p+ k
p− k

)2[ p2 + k2

2pk
ψ2(k)−

p
k

ψ2(p)
]}

= Eψ2(p) . (2.99)

2.2.4 Numerical technique: expansion in splines

In order to solve the NRSE in momentum space for s-waves, p-waves and d-waves we have
adopted a method where the wave functions are expanded into a sum of spline functions.

We use a set of cubic polynomial B-splines as our basis functions. Other choices are possible, but
based on the literature, this set of functions has proven to possess high enough flexibility to reproduce
the solutions we are interested in when solving the 1CS equation (in Chapter 3), especially in match-
ing the high-momentum tail, where other basis functions (Laguerre polynomials in ref.[3]; generalized
Yukawas, in ref.[8]) were less successful.

This way we applied them here first in the nonrelativistic domain and then used them again for the
equations of the next Chapter.

In the splines method we pick a set of SN basis functions {βn(p)} and take the wavefunction to be
a linear combination of them

ψ(p) =
SN

∑
n=1

anβn(p), (2.100)
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2 Nonrelativistic calculation of the meson spectra 2.2 Solving the NRSE in p-space

where a j ∈ ℜ are the coefficients to be determined. To construct a basis {βn(p)} on the interval
p ∈ [0,∞[, we start from a basis {bn(x)} on x ∈ [0,1], and then perform an appropriate variable trans-
formation from x to p.

The set {bn(x)} is defined to have finite support and continuous first and second derivatives. These
requirements were achieved by piecing together four cubic polynomials, each defined over a finite re-
gion. The point were the polynomials join are called knots. The cubic B−spline bn(x), centered at
knot xn, with equal space h, between the knots, is defined in x ∈ [0,1] by:

bn(x) =
1
4



(
x− xn−2

h

)3

, x ∈ [xn−2,xn−1]

1+3
x− xn−1

h
+3

(
x− xn−1

h

)2

−3

(
x− xn−1

h

)3

, x ∈ [xn−1,xn]

1+3
xn+1− x

h
+3

(
xn+1− x

h

)2

−3

(
xn+1− x

h

)3

, x ∈ [xn,xn+1](
xn+2− x

h

)3

, x ∈ [xn+1,xn+2]

0, otherwise.

(2.101)

If SN is the number of splines, then h =
1

SN +1
.

With the above definition of {bn(x)}, one must now apply a mapping to transform x ∈ [0,1] to
p ∈ [0,∞[ and impose the correct boundary conditions in p = 0.

For the S−wave basis, the derivative of the mapped functions must be zero at the origin and none
of the knots may lie outside of the interval from 0 to 1, so the first spline, b1(x), is defined entirely by
the third and fourth functions given in Eq.(2.101) and it has a zero slope at x = 0. The b2(x) spline
was defined in a special way so that it too will have zero slope at x = 0. To accomplish this, the first
sector, which lies between x0 and x1 is ‘‘folded over’’ onto the interval between [x1,x2] so it becomes,

b2(x) =
1
4

1+3
x− x1

h
+3

(
x− x1

h

)2

−3

(
x− x1

h

)3

+

(
x2− x

h

)3
 . (2.102)

With this definition, applying now the mapping

x =
2
π

arctan

(
p
Λ

)
, (2.103)

where Λ is a scale parameter (in our calculations chosen to be Λ = 1GeV ), we get the full S−wave
basis

βn(p)≡ bn(x(p)) (2.104)

on the interval p ∈ [0,∞]. As an example, for the case SN= 4 the basis functions bn(x) and βn(p) are
shown in Figs.2.7 and 2.8 .

However, or the P−wave, D−wave, etc., the basis previously defined is not suitable since it does
not reflect the correct low-momentum behavior near p = 0. It is known (see, for instance, ref.[21])
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Figure 2.7: Plot of the spline basis functions bn(x) for SN=4.
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Figure 2.8: Plot of the transformed spline basis functions βn(p) for SN=4.

that for small momenta ψl(p)∼ pl . A natural choice for the P−wave and the D−wave basis seems to
be

βp(p) = pβ (p) (2.105)

βd(p) = p2
β (p) (2.106)

Unfortunately, these basis functions are not satisfactory yet, since they don’t fall off sufficiently
fast when p→ ∞. However, a suitable choice is

βp(p) =
p

Ep
β (p) =

p√
m2 + p2

β (p), (2.107)

βd(p) =

(
p

Ep

)2

β (p) =
p2

m2 + p2β (p), (2.108)

because, the multiplying factor goes to 1 for p→ ∞, and the square root in the denominator becomes
constant when p→ 0, resulting also in the right behavior.

In order to illustrate the two previously described methods we took here the NRSE for l = 0
after our procedure to transform it in a singularity-free equation, i.e,

p2

2mR
ψ(p)−

4σ

π

∫
∞

0
dk

k2

(k+ p)2 (k− p)2.

.

[
ψ(k)−ψ(p)−

p2

2pk2 (k+ p)(k− p)ψ
′(p)

]
= Eψ(p), (2.109)

41



2 Nonrelativistic calculation of the meson spectra 2.2 Solving the NRSE in p-space

2.2.5 SSI Method (Splines single integration)

The SSI Method (Splines single integration) uses a set cubic splines β j(p) defined in order to
have the appropriate boundary conditions for the different l states. It is called splines single integration
method because it only requires single integrations.

Taking the expansion ψ(p) = ∑
SN
j=1 α jβ j(p), the first step involves choosing a proper mesh of

points pi = 1, ...,SN so that Eq.(2.109) can be transformed into:

SN

∑
j=1

p2
i

2mR
β j(pi)α j−

4σ

π

SN

∑
j=1

∫
∞

0
d p

k2

(k+ pi)
2 (k− pi)

2.

.

[
β j(k)−β j(pi)−

p2(k+ pi)(k− pi)

2pik2 β
′
j(pi)

]
α j = E

SN

∑
j=1

β j(pi)α j. (2.110)

The mesh was chosen so that the point were equally distributed in x ∈ [0,1] and then mapped into
p ∈ [0,∞[, However, there’s no unique choice and the results obtained are not completely independent
from this.

Defining now

Ai j =
p2

i

2mR
β j(pi), (2.111)

Vi j = −
4σ

π

SN

∑
j=1

∫
∞

0

k2

(k+ pi)
2 (k− pi)

2

[
β j(k)−β j(pi)−

p2(k+ pi)(k− pi)

2pik2 β
′
j(pi)

]
, (2.112)

and
Ci j = β j(pi), (2.113)

we get a generalized eigenvalue problem

(Ai j +Vi j)α j = ECi jα j, (2.114)

where E are the eigenvalues and α j the corresponding eigenvectors. Finding the set of Es and the
corresponding α j completely defines the problem of finding the binding energies and the wavefunc-
tions for the bound states.

2.2.6 SDI Method (Splines double integration)

The SDI method (Splines double integration) also uses the cubic splines previously defined but
now double integrations emerge from the fact that Eq.(2.109) is multiplied in both sides by the operator∫

p2
βl(p)d p. (2.115)

This is motivated from the Quantum Mechanics’ procedure to find the eigenvalues, using the
orthogonality of the basis set of functions. In our case, the basis is not orthogonal so the diagonalizing
procedure will not be complete. However, we reduce many of the resulting matrix entrances to zero,
facilitating the numerical computation of the eigenvalues.
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In this case, the generalized eigenvalue problem is

∫
∞

0
d p

p4

2mR
β j(p)βl(p)α j−

4σ

π

∫
∞

0

∫
∞

0
d pdk

p2k2

(k+ p)2 (k− p)2

×

[
β j(k)βl(p)−β j(p)βl(p)−

p2(k+ p)(k− p)
2pk2 β

′
j(p)βl(p)

]
α j = E

∫
∞

0
d pp2

β j(p)βl(p)α j.

(2.116)

Defining now

A jl =
∫

∞

0
d p

p4

2mR
β j(p)βl(p)α j, (2.117)

Vjl =−
4σ

π

∫
∞

0

∫
∞

0
d pdk

p2k2

(k+ p)2 (k− p)2

×

[
β j(k)βl(p)−β j(p)βl(p)−

p2(k+ p)(k− p)
2pk2 β

′
j(p)βl(p)

]
(2.118)

and
C jl =

∫
∞

0
d pp2

β j(p)βl(p) (2.119)

so (
A jl +Vjl

)
α j = EC jlα j (2.120)

where once more the E are the eigenvalues and α j the corresponding eigenvectors and the problem
of finding the binding energies and wavefunctions is finished.

2.2.7 Results

In this section we present the results obtained for the solutions of the NRSE in momentum space.
We start with table 2.8 by analyzing the consistency between the results obtained in momentum

space for the SSI and the SDI methods described in the text and our previous results of the r-space,
for the first five excited states of the l = 0 case. Globally, we can state the results are consistent, even
though the r- space and SDI method are closer to each other than the SSI method for the same number
of splines.

In table 2.9 we make the same analysis for the p and d case. In this situation the method SSI did
not provide stable results. But, considering the SDI method, we see that once more the results match
in the two spaces.

Since the results for the l = 0 case are known and can be determined in terms of the Airy function,
we investigated the accuracy of our two methods in table 2.10. The results clearly indicate the SDI
method as the most accurate.

Another important issue to address when studying numerical methods of this type is to analyze
the rate of convergence. For that one can see in Fig.2.9 and 2.10 the relative difference in percentage
between the result computed with SN = 48 and SN = 64 splines as a function of the number of the
state. We see that for the SSI Method from around n = 7 the values start diverging. On the other hand,
for the SDI method, the convergence lasts until approximately n = 13. Another interesting feature
is that almost cyclically some dips appear, indicating that convergence for some eigenvalues is more
easy than others. However, they do not coincide so probably this is related with the intrinsic structure
of the method.
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En r-space SSI SDI
E1 2.338107 2.338108 2.338108
E2 4.087949 4.087930 4.087949
E3 5.520560 5.520397 5.520560
E4 6.786793 6.786107 6.786708
E5 7.947376 7.942539 7.944133

Table 2.8: First binding energies for the s-states. Comparison between the results obtained in the r-space and
p-space, for both SSI and SDI method with SN = 64.

En r-space SDI (l = 1) r-space SDI (l = 2)
E1 3.361254 3.361258 4.248182 4.248181
E2 4.884452 4.884456 5.629709 5.629706
E3 6.207632 6.207627 6.868961 6.688798
E4 7.406265 7.405669 8.012763 8.009610
E5 8.528377 8.515238 9.117374 9.076910

Table 2.9: First binding energies for the p-states and d-states. Comparison between the results obtained in the
r-space and p-space with the SDI method with SN = 64 for the p case and d case.

Obviously, the general behavior is that the convergence worsens with increasing n and this has
a physical reason behind it. This happens because the functions evaluated are successively more
oscillant, making the integrations harder to converge. As an illustrative example we plot in Fig.2.11
and 2.12 the solutions of wavefunctions corresponding to the ψ11, ψ12 and ψ13 computed with SN = 16
and SN = 128. What one notes is that with SN = 16 we do not have enough flexibility to represent the
right solutions (wavefunctions with 11, 12 and 13 nodes as expected), so a higher number of splines
is required. In this case one needs SN = 128 to have the desired result (the correct number of nodes).

As a final overall comment, we can say that the SDI Method, has proven to be a robust and
efficient method to solve this type of integral equation and if we want to increase the precision or
describe higher excited states, we simply have to increase the number of splines in the basis.

A larger set of results can be consulted on Appendix B.
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En SSI SDI -Airy zeros
E1 2.33810847 2.33810761 2.33810741
E2 4.08793008 4.08794940 4.08794944
E3 5.52039730 5.52055962 5.52055983
E4 6.78610688 6.78670794 6.78670809
E5 7.94253855 7.94413344 7.94413359
E6 9.01914089 9.02265121 9.02265085
E7 10.0333347 10.0401766 10.04017434
E8 10.9962901 11.0085333 11.00852430
E9 11.9154774 11.9360443 11.93601556
E10 12.7959345 12.8288595 12.82877675
E11 13.6409344 13.6917101 13.69148904
E12 14.4523266 14.5283875 14.52782995
E13 15.2306641 15.3420908 15.34075514
E14 15.9751412 16.1357142 16.13268516
E15 16.6841443 16.9121212 16.90563400
E16 17.3551871 17.6750887 17.66130011
E17 17.9627796 18.4288721 18.40113260
E18 18.5544209 19.1673236 19.16732359
E19 19.2397772 19.9034692 19.83812989
E20 19.4522432 20.7065084 20.53733291

Table 2.10: Accuracy of the SSI and SDI methods. The Airy zeros were found with the software Mathematica
7.0. The results were obtained SSI and SDI methods with SN = 64.

Figure 2.9: Study of convergence in SSI Method. This plot represents in the x axis the n principal quantum
number of the state and in the y axis the relative differences in % between the binding energies computed with
SN = 48 and SN = 64 (blue) and SN = 64 and SN = 128 (red).
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Figure 2.10: Study of convergence in SDI Method. This plot represents in the x axis the n principal quantum
number of the state and in the y axis the relative differences in % between the binding energies computed with
SN = 48 and SN = 64.

Figure 2.11: Normalized wavefunction of ψ11, ψ12 and ψ13 with SN = 16.

Figure 2.12: Normalized wavefunction of ψ11, ψ12 and ψ13 with SN = 128.
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Chapter 3

Relativistic calculation of the meson
spectra

Figure 3.1: What does the dinosaur see?, from “Relativistic Effective Field Theory”, Franz Gross, in “INT
Program 03-3, Theories of Nuclear Forces and Nuclear Systems, 2003”.

In the last chapter we developed a nonrelativistic study of mesons. We found exact solutions
of the Schrödinger equation, both in configuration and momentum space, for a general angular mo-
mentum (l = 0 and l 6= 0) orbital state. The results for the momentum space equation were obtained by
applying the splines method. Those results were compared and seen to be consistent with the results
obtained for the equation in coordinate space. This first study provided us therefore with an opportu-
nity to gain insight and test numerical techniques for calculations in momentum space. We acquired
control on numerical methods which are suitable for calculations in momentum space, unavoidable in
relativistic approaches. Moreover, this first set of calculations confirmed that a nonrelativistic descrip-
tion is adequate for the heavy mesonic sector, while it is not valid for mesons made of light quarks.
The quality of the fits obtained in the light quark sector were substantially worse than those obtained
in the heavy quark sector.

In this chapter we will now treat mesons within a Constituent-Quark formalism that is covariant.
The importance of the work of the previous chapter will become clear as the details of this more com-
plex approach, and our attempts to solve it, are revealed. As we will see, every time we stumbled with
an apparent difficulty, our previous experience gained with the nonrelativistic approach will become
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useful.

The formalism that we will concentrate upon is the so-called Covariant Spectator Theory (CST).
CST is a relativistic Effective Quantum Field Theory which has been widely used in different types
of physical systems, mainly in problems involving static and electromagnetic properties of systems
of few nucleons. For bound-states the idea of the CST is to reorganize the manifestly covariant
Bethe–Salpeter (BS) equation with its complete kernel to an equivalent form, in which a different
propagator, and accordingly a modified kernel, is used. The practical advantage is that the new prop-
agator is chosen such that the dimension of the integration over intermediate momenta reduces from
four to three, while maintaining the covariance of the equation.

There are many ways to rearrange the BS equation leading to a dimensional reduction. The re-
sulting equations are called “quasi-potential equations.” While the CST belongs to this category, it
has properties that not all of the other quasi-potential theories possess. For instance, it satisfies the
property of cluster-separability, important to deal with scattering problems. It also has the correct one-
body limit: when one particle is very massive compared to the other, the two-body equation reduces
to a relativistic one body equation for the light particle moving in an effective potential created by the
massive particle. The numerical check of this property of the CST equation provides a good test to
our computational methods.

We start this chapter with a brief description of the formalism and the framework of CST (Covari-
ant Spectator Theory), and a review of the Gross and Milana’s model ref.[3], a first application of the
CST to the study of mesons, with limitations that we will discuss. We present then our results for the
the 1CS (One-channel two-body vertex Covariant Spectator) equation in the helicity space for a scalar
confining potential. To verify the one-body limit we also investigate how our numeric results evolve
in two specific limits:

1. When the mass ratio, κ =
m1

m2
, between the quark and the antiquark, goes to infinity;

2. When on top of the last limit for the mass ratio, the mass of the light particle is also taken to be
large.

In the first case we checked that we obtain the results of the Dirac equation for light particle in
the field produced by the heavy one. In the second case we checked that we obtain the nonrelativistic
results corresponding to the Schrödinger equation.

3.1 Formalism

3.1.1 The Covariant Spectator Theory (CST)

The framework we are interested to work in is based on the CST. The idea behind this theory is that
the relativistic series of Feynman diagrams describing any nuclear process can always be reorganized
so that only the particles which are interacting are off -mass-shell, and all the other particles, which
are spectators to the interaction, are considered on-mass-shell.

In the literature a first work that developed this idea is found in reference [4], where integral
equations particularly suitable to the dynamical treatment of strongly interacting particles are derived.
These equations were deduced from the Bethe-Salpeter equations following one major assumption:
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All the particles of a system, but one, are on the-mass-shell for all the intermediate states. The
on-mass-shell particles are viewed, and called, as "spectators" of an interaction vertex. It is the

off-mass-shell particle that participates in the vertex of the interaction.

As a consequence of this assumption the complete kernel of the fourth dimensional Bethe-Salpeter
equation is turned into an equivalent form, with a different propagator and a kernel modified accord-
ingly. The new propagator is chosen such that, when the kernel of the reorganized equation is truncated
to include ladder terms only, the dimension of the integration over intermediate momenta reduces from
four to three, while maintaining the covariance of the equation.

This underlying principle of the CST is originally motivated by a very interesting observation:
a partial but important cancellation occurs between the two-body box and crossed-box diagrams in
scalar theories of φ 3-type. This cancellation implies that the only terms that survive in any iteration of
the exact ladder and crossed kernel terms are the ladder diagrams with one particle on-mass-shell in
all intermediate states. At the end, therefore, the integral equation that is obtained sums only ladder di-
agrams with one particle on-mass-shell in any intermediate state, and consequently is a 3-dimensional
reduction of the 4-dimensional Bethe-Salpeter equation. This way, we overcome the impossibility of
summing an infinite series of diagrams and get a better approximation by summing only ladder terms
where one particle is on mass-shell in all internal loops.

To take a deeper look on this topic lets consider a φ 3-type theory including three types of particles:
two charged scalar particles with masses m1 and m2, and the corresponding fields Φ1 and Φ2, and a
neutral scalar one with mass µ and field φ . The scattering between them, to second order, will have
only one contribution, represented in fig.3.2.

Figure 3.2: The box diagram. The thick line refers to particle 1, the thin line to particle 2 and the dashed lines
to the particle being exchanged.

Figure 3.3: The crossed-box diagram. The notation is the same as in Fig.3.2.

It is shown in ref.([35]) that for the case of higher orders, for long range peripheral interactions, the
ladder diagrams, i.e. those which replicate the structure of the (OBE) one boson exchange diagram,
are the ones with a larger contribution (see fig.3.4).
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Figure 3.4: The ladder diagrams to sixth order.

Aplying the Feynaman rules for φ 3, the scattering amplitude for the box diagram is:

Mbox = iλ 2
1 λ

2
2

∫ d4k
(2π)4

1

D1D2D0D′0
, (3.1)

where λ1 and λ2 are the coupling constants, assumed here to be small and the poles in the propa-
gator are given by:

D1 = m2
1− (P− k)2− iε = E2

1 (k)− (W − k0)
2− iε

D2 = m2
2− k2− iε = E2

2 (k)− k2
0− iε

D0 = µ
2− (k− p)2− iε = ω

2− (k0−E2(p))2− iε

D
′
0 = µ

2− (k− p)2− iε = ω
′2−

(
k0−E2(p

′
)
)2
− iε

(3.2)

We also have m1 < m2 and µ � m1 and the external particles are on-shell. The diagram is taken
to be in the center of mass frame so:

Ei(k) =
√

m2
i +k2 ω =

√
µ2 +(k−p)2

Ei(p) =
√

m2
i +p2 ω ′ =

√
µ2 +(k−p′)2

W = E1(p)+E2(p) = E1(p′)+E2(p′)

(3.3)

Now, factoring the denominators in Eq.(3.1) and representing the poles in the k0 complex plane
we have eight poles, numerated as indicated as follows:

D1 = (E1(k)−W − k0− iε)︸ ︷︷ ︸ (E1(k)+W − k0− iε)︸ ︷︷ ︸
5 4

D2 = (E2(k)+ k0− iε)︸ ︷︷ ︸ (E2(k)− k0− iε)︸ ︷︷ ︸
8 1

D0 = (ω−E2(p)+ k0− iε)︸ ︷︷ ︸ (ω +E2(p)− k0− iε)︸ ︷︷ ︸
6 2

D
′
0 =

(
ω
′−E2(p′)+ k0− iε

)︸ ︷︷ ︸ (
ω
′+E2(p′)− k0− iε

)︸ ︷︷ ︸
7 3

(3.4)

Evaluating the box diagram by choosing a contour in the lower half of the k0 complex plane, pole
1 is the dominant one, because it is very close to the singularity at k0 = W −E1, pole 5 in the upper
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Figure 3.5: The location of the singularities of the box diagram in the complex k0 plane, when |k| is small. As
|k| increases, the singularities in the lower half plane move to the right and those in the upper half plane move
to the left.

half plane. Keeping this term only, we have:

Mbox ' −λ 2
1 λ 2

2
∫ dk3

(2π)3

1
2E2(k)

[
E2

1 (k)− (W −E2(k))− iε
]×

1[
ω2− (E2(k)−E2(p))2

][
ω ′2− (E2(k)−E2(p′))2

]
'

−λ 2
1 λ 2

2

4m1m2

∫ dk3

(2π)3

1
[E1(k)+E2(k)−W − iε]ω2ω ′2

,

(3.5)

where E2(k) was approximated by E2(k)∼ m2 and E1(k)+W −E2(k)∼ 2m1.

We can now estimate the value of the integral by taking the case when m1 and m2 are both
very large and p = p′, corresponding to the scattering in the forward direction. The integral is cut off
by the energies ω = ω ′, and k = |k| ' µ, making it possible to expand the energies in the integrand as

E1(k)' m1 +
k2

2m1
.

This way, for large m we have:

Mbox '
−λ 2

1 λ 2
2

4m1m2

∫ dk3

(2π)3

2m

(k2− p2− iε)
(

µ2 +(k−p)2
)2

=
−λ 2

1 λ 2
2

4m1m2

∫
∞

0
k2dk
2π2

2m

(k2− p2− iε)
(
(k2 + p2 +µ2)2 +4k2 p2

)
=

−λ 2
1 λ 2

2

16π

1
(m1 +m2)µ2

(
1

µ−2ip

)
.

(3.6)

where m is the reduced mass and the integral was evaluated in the last step by extending k to −∞ and
using the residues theorem.

However, if we now consider the crossed-box diagram as shown in fig.3.3 and follow the
labeling suggested in it, the only difference from the the scattering amplitude of the box diagram
Eq.(3.1) is the momentum of the internal propagator for particle 2, so

Mcrossed−box = iλ 2
1 λ

2
2

∫ d4k
(2π)4

1

D1D×2 D0D′0
(3.7)
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and D1, D0 and D′0 are identical to those defined on Eq.(3.1.1), but

D×2 = m2
2− (p+ p′+ k)2− iε

=
(
E×2 (p)+2E2(p)− k0− iε

)︸ ︷︷ ︸ (
E×2 (p)+2E2(p)+ k0− iε

)︸ ︷︷ ︸
8× 1×

(3.8)

where
E×2 (p) =

√
m2

2 +(p+p′+k)2 (3.9)

There are still eight poles in the complex k0 plane, but two of the poles, 1× and 8×, have different
locations, as shown in fig.(3.6). Ignoring poles 8 and 8×, which are negligible, the major difference
between the boxed and crossed-box, is that the pole 1, which dominate the box, has moved from the
lower half plane to the upper half plane. These two poles are located at:

• pole1: k0 = E2− iε ∼= m2 +
k2

2m2
− iε;

• pole 1×: k0 = 2E2(p)−E×2 ∼= m2 +
p2

2m2
−

(p+p′+k)2

2m2
+ iε .

Figure 3.6: The location of the singularities of the crossed-box diagram in the complex k0 plane.

Introducing k0 = k′0 +E2(p), these two denominators become

• box:
1

D2

∼=
1

2m2

(
k2− p2

2m2
− k′0

);

• crossed-box:
1

D×2
∼=

1

2m2

(
(p+p′+k)2

2m2
−

p2

2m2
+ k′0

).

If m2 is very large, the terms in the denominators proportional to m−1
2 may be neglected compared

to k
′
0 (which is equal to ω or ω ′ at the poles), and we see that

1
D2

∼=
−1
D×2

(3.10)

Hence, in this approximation the dominant contributions from the crossed-box are equal to the
contributions of the box but have opposite sign, so that their sum (box plus crossed-box cancels).

In fact this cancellation is quite general (see ref.[35]) originating the following theorem:
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Cancellation Theorem
In a theory in which a spin zero particle of mass m1 interacts with a heavy particle of mass m2 (which
has no charge states) by exchanging a spin zero meson of mass µ , the meson pole contributions from
the ladder diagram are canceled by the meson pole contributions from crossed-ladder diagrams, and

this cancellation is exact in the limit as m2→ ∞.

Figure 3.7: Illustration of the cancellation theorem. The cross means that the heaviest particle is on its mass
shell.

Figure 3.8: The relation of the s-channel bubble diagram to the box diagram when the four-point vertex is
“opened” and transformed into a boson exchange

Figure 3.9: The relation of the u-channel bubble diagram to the box diagram when the four-point vertex is
“opened” and transformed into a boson exchange

An interesting confirmation of this theorem was presented in ref.([7]) where now the authors con-
sidered, instead of φ 3-theory a φ 4-type theory, with two scalar fields, one neutral with mass M called
ψ ,and one charged with mass m < M called φ , interacting through LI =−λφ †φψ2. In fact the φ 4-
type theory can be interpreted as limits of φ 3-type theories with an infinite mass being exchanged, as
illustrated in fig.3.8 and fig.3.9. When the 4-point vertex function is "opened" to represent a one-boson
exchange, the s-channel diagram becomes the box diagram, and the u-channel, after some additional
deformation without changing its topology, becomes the crossed-box diagram.

We emphasize that the complete kernel of the CST equation contains an infinite number of irre-
ducible diagrams, which makes it formally equivalent to the BS equation. It is only when the kernel
is truncated, that exact equivalence to the full BS equation is lost. However, this would only be an
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issue if one attempted to find an exact solution of a field theory for a given Lagrangian. Instead, the
equations of CST can be taken as the starting point for a description of few-body systems that is in
part phenomenological; they are based on certain physical mechanisms, such as one-boson exchange
(OBE), but they have phenomenological aspects in the way integrations are regularized, and in the use
of parameters, some of which have to be determined from fits to experimental data.

3.1.2 A CST model for mesons

The GM model (ref.[3]) is the first covariant model that appeared as an application of the CST to
the bound state of a quark+antiquark system. We review here the main features of this model:

1. Mesons are interpreted as bound-states of a quark and an antiquark, either one of which can be
off -shell. The model is a relativistic generalization of the nonrelativistic (or semirelativistic)
models of Godfrey and Isgur (ref.[36]).

2. The relativistic bound state equation is written in momentum space, where nonlocalities and
energy dependences of the interactions can be taken into account more easily.

3. The confining potential has a linear part that is known to emerge, in the quenched approxi-
mation, from lattice QCD calculations, and a constant part that enables an adjustment of the
overall energy scale. In momentum space this potential has a leading term in q−4, that is regu-
larized by subtracting the leading singularity at q2 = 0. This potential is multiplied by a λ1.λ2
factor to account for the color part.

4. The spin-dependent structure of the confining potential is chosen to be consistent with chiral
symmetry. The authors explored the simplest case of chiral symmetry under the SU(2)×SU(2)
group and also under the U(1)×U(1) group case.

5. Following the ideas of NJL models (ref.[37]) in which chiral symmetry is spontaneously bro-
ken, the constituent quark mass arises dynamically from its self-interaction with the confining
forces. Considering the pion, its nonzero mass is theoretically a natural consequence of chiral
symmetry breaking generating a sizable quark mass from the originally almost zero bare quark
mass of the QCD Lagrangian. However, in the numerical calculations, this consistency between
confinement and chiral symmetry was not yet fully implemented.

6. In the relativistic equation for the bound state the relative energy variable is constrained by re-
stricting one of the quark to its positive energy mass-shell — this is called the one-channel case.
This means that despite the fact that the equations are covariant, they depend, like nonrelativistic
equations, on the relative three momentum only and have a smooth nonrelativistic limit so they
are expected to describe most accurately the heavy-light deeply bound systems.

7. For the case of not very deeply bound states, two channels have to be included, one with
the quark on its positive-energy mass-shell and one with the antiquark on its negative energy
mass-shell. This point will be seen in more detail on the next section.

3.1.3 The one-channel vertex spectator 1CS equation
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We will proceed now to consider in detail the case of the one-channel spectator equation. Fol-
lowing the features just described, we take here the meson as a bound state of a quark and an anti-
quark, and write down the Feynman diagram for the bound state meson vertex equation has shown in
Fig.(3.10).

Particle 1 is the quark, particle 2 the antiquark and O is a matrix in the Dirac space that describes
how the confining force couples to the quark or antiquark. The kernel V contains the momentum
dependent structure of the confining potential. The equations are derived in the center of mass rest
frame, where P = (µ,0).

Later, the quark (particle 1) will be placed on shell, thus producing the single channel equation.
The four momenta used in the diagram in terms of the total four-momentum P = p1− p2, and the
relative momentum p = 1

2 (p1 + p2) are:

final state: p1 = p+
1
2

P p2 = p− 1
2

P,

internal loop: k1 = k+
1
2

P k2 = k− 1
2

P,
(3.11)

where p1 refers to the quark and p2 refers to the anti-quark (which has a minus sign).

Figure 3.10: Diagrammatic representation of the Bethe-Salpeter equation for the meson bound-state
vertex function Γ. The kernel, or potential, is denoted by V .

With this notation, the Bethe-Salpeter equation for the bound state vertex function of a meson,
where the quark-antiquark interaction has a general Dirac vertex structure O , is:

Γ(p) = i
∫ d4k

(2π)4V (p,k)O
m1+ 6 k1

m2
1− k2

1
Γ(k)

m2+ 6 k2

m2
2− k2

2
O. (3.12)

Poles in the propagators

The two fermion propagators have poles that can be represented in the complex plane k0. Factoring
the denominators of the propagators as:

1
m2

i − k2
i
= G+

i G−i , (3.13)
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we have the following poles:

pole 1
(
G+

1

)−1
= Ek1−

(
k10 +

1
2

µ

)
− iε k10 = Ek1−

1
2

µ− iε

pole 2
(
G+

2

)−1
= Ek2−

(
k20−

1
2

µ

)
− iε k20 = Ek2 +

1
2

µ− iε

pole 3
(
G−1
)−1

= Ek1 +

(
k30 +

1
2

µ

)
− iε k30 =−Ek1−

1
2

µ + iε

pole 4
(
G−2
)−1

= Ek2 +

(
k40−

1
2

µ

)
− iε k40 =−Ek2 +

1
2

µ + iε.

(3.14)

They are represented in Fig.(3.11).

Figure 3.11: Position of the four poles associated with the four propagators Gρ

i in the bound state equation.

Performing the k0 integration in a closed contour in the lower half plane, we may keep only
the residue from pole 1. This is a good approximation when µ small, since the pole 1 is in the close
vicinity of pole 3 — where the integrand is large — and therefore 1 is the dominating contribution
from the lower half plane poles.

Γ(p) =−
∫ d3k

2Ek1(2π)3V (p,k)O(m1+ 6 k̂1)Γ(k)
m2+ 6 k2

m2
2− k2

2
O, (3.15)

where now k̂1 = (Ek1,k)1 and k2 = (Ek1−µ,k).

This is one form of the One Channel Spectator equation, labeled for short, the 1CS equation.

Recalling that the projection operator (see ref.[35]) can be written2:

m1 + ˆ6 k1 = ∑
λ ′

u
(
k,λ ′

)
ū
(
k,λ ′

)
, (3.16)

as a sum over on-shell u spinors, we have:

m1+ 6 k1 = ∑
λ ′

u
(
k,λ ′

)
ū
(
k,λ ′

)
. (3.17)

1The hat on k1 means the particle is on-shell.

2where u(p,λ ) =
√

Ep +m

 1
σ .p

Ep +m

χλ
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Defining now the relativistic meson wave function as

Ψ(k,λ ) =
1

√
2Ek1

ū(k,λ )Γ(k)
m2+ 6 k2

m2
2− k2

2
, (3.18)

Eq. (3.15 ) becomes:

Ψ(p,λ )(m2− 6 p2) =−
∫ d3k

(2π)3

V (p,k)√
4Ep1Ek1

∑
λ ′

ū(p,λ )Ou
(
p,λ ′

)
Ψ(k,λ ′)O. (3.19)

An important remark about how the vertex equation was deduced in the CST can now be done.
The real question is always which poles should be kept. We are not aware of a simple prescription
that satisfactorily determines all possible cases for all systems. The basic idea is to perform the
energy integration in the Bethe-Salpeter equation by picking out only the dominant poles of the particle
propagators in the intermediate states. Which and how many poles are dominant depends on the
system under consideration. For instance, in an effective two-body description of nucleon-nucleus
scattering one pole dominates, namely the positive-energy pole of the heavier nucleus, whereas in the
case of light mesons the quark and antiquark poles can be very close to each other, such that there is
no justification for neglecting one of them. In nucleon-nucleon scattering the positive-energy poles of
both nucleons contribute for a different reason, namely because the equations have to be antisymmetric
under particle interchange. Another example is charge conjugation symmetry: It is usually not of
particular importance if the two-nucleon amplitudes are symmetric under charge conjugation, but a
quark-antiquark bound-state wave functions definitely should be charge-conjugation invariant. To
achieve this, poles in both half planes have to be included. Thus, already in these examples one can
obtain one-, two-, or four-channel equations, all of which can be considered as CST equations, but
with different properties.

The 1CS one-body (Dirac) limit

In this section we want to show the reduction of the 1CS equation to the one body Dirac equation,
theoretically. At the end of the chapter we will show that our numerical results are consistent with this
limit.

We start by defining:
O++

λλ ′ (p,k)≡ ū(p,λ )Ou
(
p,λ ′

)
, (3.20)

and so:

Ψ(p,λ )(m2− 6 p2) =−
∫ d3k

(2π)3

V (p,k)√
4Ep1Ek1

∑
λ ′

O++
λλ ′ (p,k)Ψ(k,λ ′)O.

Let us now rewrite this equation in a form closer to the Dirac form by taking its transpose and
multiplying it by the Dirac charge conjugation matrix 3 C. One obtains

(m2+ 6 p2)Ψ̂(p,λ ) =−Ô ∑
λ ′

∫ d3k

(2π)3Ψ̂(k,λ ′)
V (p,k)√
4Ep1Ek1

ū(p,λ )Ou
(
k,λ ′

)
, (3.21)

3C =

(
0 −iσ2
−iσ2 0

)
, and σ2 is the usual Pauli matrix.
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where
Ψ̂(p,λ ) =CΨT (p,λ ) , Ô =COTC−1. (3.22)

We need now to compute the matrix element O++
λλ ′ (p,k) = ū(p,λ )Ou(k,λ ′) explicitly. We con-

sidered O to be the unit matrix and chose to work in the Helicity Space. A further discussion can be
seen both in ref.[38] and in Appendix A of this thesis. Here we only give the result, namely:

ū(p,λ )Ou
(
k,λ ′

)
= Np1Np2

(
δλλ ′ cos

1
2
(θ −θ

′)−2λδλ ,−λ ′ sin
1
2
(θ −θ

′)

)(
1+4λ

′
λ p̃1k̃1

)
.

(3.23)
Np1 , Np2 , λ , λ ′, θ , θ ′, p̃1 and k̃1 are properly defined on Appendix A.

If we define now the following two independent linear combinations:

Φ+(p) = Ψ̂
(

p, 1
2

)
cos 1

2 θ
′− Ψ̂

(
p,−1

2

)
sin 1

2 θ
′
,

Φ−(p) = Ψ̂
(

p, 1
2

)
sin 1

2 θ
′
+ Ψ̂

(
p,−1

2

)
cos 1

2 θ
′
,

(3.24)

Eq.(3.21) becomes equivalent to the set of equations
(m2+ 6 p2)Φ+(p) =−Ô

∫ d3k

(2π)3

Np1Nk1√
4Ep1Ek1

V (p,k)
(
Φ+(p)

[
1+ p̃1k̃1 cos(θ −θ ′)

]
+Φ−(k)p̃1k̃1 sin(θ −θ ′)

)
,

(m2+ 6 p2)Φ−(p) =−Ô
∫ d3k

(2π)3

Np1Nk1√
4Ep1Ek1

V (p,k)
(
Φ−(p)

[
1+ p̃1k̃1 cos(θ −θ ′)

]
−Φ+(k)p̃1k̃1 sin(θ −θ ′)

)
.

(3.25)

Now we can observe that taking the limit m1→∞ gives a Dirac equation for the light particle. The
fixed source for the Dirac equation is the heavy quark. As m1→ ∞, p̃1→ 0 and V (p,k)→ V (p−k)
and this gives (

m2+ 6 p
′
2

)
Φ(p) =−Ô

∫ d3k

(2π)3V (p−k)Φ(k), (3.26)

where the helicity of the heavy particle was dropped because the equation is independent of it and we
introduced the physical momentum, p

′
2 =−p2 = (µ−Ep1 ,−p)→ (EB, p′) with EB = µ−m1.

We conclude that the 1CS has the proper on-body Dirac limit when the mass of the heaviest particle
is taken to infinity: it gives the Dirac equation for the light anti-particle moving under the influence of
a potential that is created by the heavy quark.

3.1.4 The two-channel vertex spectator 2CS equation

As explained in section 3.1.3 in the case of not deeply bound states, i.e., a very small bound state
mass is (i.e. µ � mi), pole 2 in figure 3.11 is as important as pole 1, and two-channels must be
included in the formalism, corresponding to quark and anti-quark taken on their positive mass-shell.
In this case Eq. (3.12) becomes unsuitable for the description of the pion, given its very small mass.
and there will then be two components of the vertex function, Γ1 and Γ2, corresponding respectively
to the quark and the anti-quark on-mass-shell. The set of equations that define those components is
represented in Fig.(3.12). One writes then
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Figure 3.12: The zigzag line represents the kernel, which in this paper is the sum of a confining interaction and
the exchange of another particle. A cross on a quark line indicates that the particle is on mass shell.

Γ1(p,P) =−
∫ d3k

(2π)3

[
V11(p,k;P)

Γ1(k,P)
2Ek−µ

+V12(p,k;P)
Γ2(k,P)
2Ek +µ

]
,

Γ2(p,P) =−
∫ d3k

(2π)3

[
V21(p,k;P)

Γ1(k,P)
2Ek−µ

+V22(p,k;P)
Γ2(k,P)
2Ek +µ

]
,

(3.27)

For each of the four potential channels, V11, V12, V21, V22 the square of the four-momentum transfer
(p− k)2 is

q2 = (Ep−Ek)
2− (p−k)2 (for V11and V22);

q2 = (Ep−Ek−µ)2− (p−k)2 (for V12);

q2 = (Ep +µ−Ek)
2− (p−k)2 (for V21).

(3.28)

Figure 3.13: Summary of ref.[10] results.

Finally, if the quark masses are identical, one has to impose invariance under charge-conjugation,
or quark-antiquark exchange: interchange of the momenta p1→ p2, together with taking the transpose
of the vertex function. This originates 4 channel equations. It is out of the scope of this thesis to study
and solve either the 2CS or its 4 channel charge-conjugated symmetric version. Just for reference, in
ref.[10] the GM model, where a phenomenological quark mass function is used, solved both cases.
Very reasonable results for pions and kaons were obtained in that reference as shown in the table. This
is a motivation to proceed to the next stage — where the quark mass function is consistently calculated
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3 Relativistic calculation of the meson spectra 3.1 Formalism

—since the formalism, designed to work well in the heavy quark sectors, can also be extended to the
light quark sector.

3.1.5 Choosing a convenient relativistic potential for the qq̄ interaction

The confining potential has a linear and a constant part to set the scale. Lets consider first the
linear part, that in the nonrelativistic case is simply given by:

V (r) = σr. (3.29)

From section 2.2.1, we already know how to treat this potential in the momentum space, so we
will simply rewrite it here

VL(q) = lim
ε→0

[
VA(q)− (2π)3

δ
(3)(q)

∫ d3q′

(2π)3VA(q′)
]
, (3.30)

where q is the momentum transfer, and

VA(q) =−
8πσ

(q2 + ε2)2 . (3.31)

Relatively to the the constant part, it appears to adjust the mass scale. In momentum space this
corresponds to

VC(q) = (2π)3
δ (q)2mRC, (3.32)

where mR is the reduced mass of the qq̄ system, and C is a dimensionless constant. The total
potential VT is then:

VT =VC +VL. (3.33)

A possible way to give this non-relativistic potential a relativistic form would be to replace the
nonrelativistic q by the relativistic q2 = q2

0−q2, with arbitrary q0. However, if one of the two quarks
is very massive, the energy q0 transferred to it is expected to be small, so that the nonrelativistic limit
should emerge. However this doesn’t happen if q0 is left unconstrained, and no assumption is made
on its dependence on the heavy quark mass. In fact, one way to maintain covariance exactly, and also
to allow the nonrelativistic limit to emerge naturally, is to restrict the heavy quark to its mass shell, so
that the four-momentum transfer becomes

q→ q2 = (Ep−Ek)
2− (p−k)2 , Ep =

√
m2

1 +p2, (3.34)

where m1 is the mass of the heavy quark. The energy transfer now automatically approaches zero
as m1 → ∞. As we have seen, to consider the quark on-mass-shell is justified even away from this
mass limit, if poles 1 and 2 in fig.3.11 of the iterated potential (defining one loop diagrams) are
sufficiently far apart, what happens when µ � mi. The generalization defined by Eq.3.34 is therefore
also consistent with the choice made on which poles to be included in the iteration of the potential.

In reference [3] the potential used for the generalization of the relativistic case for spin- 1
2

particles was:
V (p,k;P) =Ve f f (p,k;P)∑

i
Oi

1Oi
2, (3.35)

60



3 Relativistic calculation of the meson spectra 3.1 Formalism

where the Dirac matrices O, which operate on the Dirac indices of particles 1 and 2, describe
the spin-dependent structure of the kernel, and Ve f f , a covariant scalar function, gives the momentum
dependence of the effective confining potential and is given by

Ve f f (p,k;P) =VA(p,k)−Ekδ (p−k)
∫ d3k′

Ek′
VA(p,k′)+C(2π)3Ekδ (p−k), (3.36)

and

VA(p,k) =−8πσ
1

(p− k)4, (3.37)

Notice that the Ek and Ek′ energy factors ensure that the potential is explicitly covariant. This

covariance is evident since an integral over
∫ d3k

2Ek
can be expressed as

∫
d4kδ+(m2

1− k2
1).

3.1.6 Chiral Symmetry

It is believed that the pion, the lightest of mesons, is the Goldstone boson associated with the
breaking of chiral symmetry of the QCD Lagrangian. The model tries to explain its emergence through
a generalization of the Nambu-Jona-Lasinio (ref.[37]) mechanism. In fact, what the model guarantees
is that the dynamical generation of quark mass in the limit when the "bare", or undressed, quark mass
is exactly zero (the so called chiral limit) is be accompanied by the existence of a pseudoscalar bound
state of zero mass (precisely the pion).

This occurs, as it will be explained in this section, because the Dyson equation for the dynam-
ical generation of quark mass and the two equation for a pseudoscalar bound state of zero mass are
identical in the limit when the current quark mass is zero, and hence the existence of a solution for
one implies a solution for the other. This identity can be illustrated diagrammatically by realizing that
the diagram for the 2-body vertex in Fig.(3.15) in the case of total four-momentum (P = P0,~P = 0)
reduces to the one-body diagram in Fig.(3.14). We will now present the analytical proof of this corre-
spondence.

We start by considering the self-consistent Dyson equation for the quark self-energy, represented
squematically in Fig.(3.14) and defined by:

Σ(p) =6 pΣ
ν(p)+Σ

s(p), (3.38)

From Fig.(3.14) this leads to

6 pΣ
ν(p)+Σ

s(p) = i
∫ d4k

(2π)4Ve f f (p− k)∑
i

Oπ
i

1
6 k−m0−Σ(k)

Oπ
i , (3.39)

where m0 is the "bare" mass of the quark.

We next write down the bound-state equation for two dynamical quarks using ladder approxi-
mation, shown schematically in Fig.(3.15). Defining the vertex function, Γ(p,P), as:

Γ(p,P) = i
∫ d4k

(2π)4Ve f f (p− k)∑
i

Oπ
i S

[
k+

P
2

]
Γ(k,P)S

[
k−

P
2

]
Oπ

i , (3.40)

where

S(q) =
1

6 q−m0−Σ(q)
. (3.41)
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There is not however, one unique choice for the spinor structure, {Oπ} , of the interaction
compatible with this condition. We can study two possible structures.

Figure 3.14: Self-consistent Dyson equation for the quark selfenergy. Blobs represent the full quark propaga-
tor, while the heavy thick line schematically represents the potential.

Figure 3.15: Equation for the vertex function.

Chiral symmetry with Oπ symmetric under SU(2)×SU(2) group

Defining Oπ by imposing that:

∑Oπ
i Oπ

i = 1− γ
5
1 γ

5
2 τ1τ2, (3.42)

i.e., the sum of scalar-isoscalar and pseudoscalar-isovector exchange terms. The self-energy equa-
tion then becomes

Σs(p) =−2i
∫ d4k
(2π)4Ve f f (p− k)

m0 +Σs(k)

k2 [1−Σν(k2)]2− [m0 +Σs(k)]2
,

pΣν(p) = 4i
∫ d4k
(2π)4Ve f f (p− k)

p.k [1−Σν(k)]

k2 [1−Σν(k2)]2− [m0 +Σs(k)]2
.

(3.43)

With the same interaction, the bound-state equation for a zero-mass ((P0,~P) = (0,0)) pion with a
vertex function of the form

Γ(p,0) = Γ0(p)τγ
5 (3.44)

is

Γ0(p)τγ
5 =iτ

∫ d4k
(2π)4

Ve f f (p− k){
k2 [1−Σν(k2)]2− k2 [m0 +Σs(k2)]2

}2×

× (
{
6 k
[
1−Σ

ν(k2)
]
+m0 +Σ

s(k2)
}

Γ0(p)γ5{6 k [1−Σ
ν(k2)

]
+m0 +Σ

s(k2)
}
+

+ γ
5{6 k [1−Σ

ν(k2)
]
+m0 +Σ

s(k2)
}

Γ0(p)γ5{6 k [1−Σ
ν(k2)

]
+m0 +Σ

s(k2)
}

γ
5).
(3.45)
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Passing all the γ5s to the left we get, for Γ0(p),

Γ0(p) =−2i
∫ d4k

(2π)4Ve f f (p− k)
Γ0(k)

k2 [1−Σν(k2)]2− [m0 +Σs(k)]2
. (3.46)

A comparison of the self-energy, Eq.3.43, and the pion, Eq.3.50, equations shows that, in the
case of the zero bare quark mass m0 = 0 the pion equation is ensured of having a solution, namely,

Σ
s(p) = Γ0(p). (3.47)

Chiral symmetry with Oπ symmetric under U(1)×U(1) group

Another possible choice, slightly more complex one, is

∑
i

Oπ
i Oπ

i =
1
2
(
1− γ

5
1 γ

5
2 − vγ

µ

1 γ2µ

)
, (3.48)

i.e., the sum of scalar, pseudoscalar and vector terms (all isoscalar), wher v is an arbitrary, nonzero,
constant. This choice has the advantage of being flavour independent so perhaps it would be a more
natural choice for fitting the mesonic mass spectrum. The vertex function however is much more
difficult:

Γ(p,µ) = Γ1(p)τγ
5 +Γ2(p)τγ

5 6 P+Γ3(p)τγ
5 6 p. (3.49)

We will consider here only the case v = 1.
In this case, the self-energy and the vertex functions, correspondingly, become:

Σs(p) =−2i
∫ d4k
(2π)4Ve f f (p− k)

m0 +Σs(k)

k2 [1−Σν(k2)]2− [m0 +Σs(k)]2
,

pΣν(p) = 2i
∫ d4k
(2π)4Ve f f (p− k)

p.k [1−Σν(k)]

k2 [1−Σν(k2)]2− [m0 +Σs(k)]2
.

(3.50)

and

Γ0(p) =−2i
∫ d4k

(2π)4

Ve f f (p− k)Γ0(k)
D(+)D(−)

[[
k2−

P2

4

]
A(+)A(−)−B(+)B(−)

]
, (3.51)

where 
A(±) = 1−Σν

(
k± 1

2 P
)
,

B(±) = m0 +Σs
(
k± 1

2 P
)
,

D(±) =
(
k± 1

2 P
)2

A(±)2−B(±)2 .

(3.52)

Once again, if the pion mass is zero, Γ0(p) reduces identically to the scalar self-energy Σs(p),
reassuring the emergence of a Goldstone boson.
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3.2 Numerical techniques and results

In this work we chose to solve both the Dirac and the 1CS equation with a scalar linear potential.
Our computations were performed in helicity representation for the s-wave case. This choice was
made in order to reproduce the results of ref.([38]).

Specifically, in Eq.(3.19) we have adopted

O ≡ 1 (3.53)

and

V (p,k) =−8πσ

 1

(p− k)4−Ep1δ
3 (p− k)

∫ d3k′

Ek′1
(p− k′)4

 , (3.54)

where the insertion of the energy factors is necessary to make the kernel covariant with the restriction
of the heavy quark placed on its mass shell. The full 1CS also includes the covariant replacement (p−
k)2→ (Ep1−Ek1)

2− (p−k)2, but in the numerical studies in this work we have neglected retardation
and use the simplest replacement (p−k)2→−(p−k)2 as the authors did in ref.([38]). This is usually
called the quasirelativistic approximation.

3.2.1 Expansion in splines and matrix form for the 1CS and Dirac equations

In order to solve the Dirac equation and the 1CS equation numerically, we wrote it in the helicity
basis states. This procedure is outlined in Appendix A. Here we just write down the final form of the
equations.

Thus, the one-body or Dirac limit equation in this basis is(
(EB−Ep2) ψ1a(p)
(EB +Ep2) ψ1b(p)

)
=
∫

k
V̄
(

d1 d2
d3 d4

)(
ψ1a(p)
ψ1b(p)

)
, (3.55)

where

V̄ =V (p,k)
Np2Nk2(

2
√

Ep2Ek2

),
Epi =

√
m2

i + p2
i , Npi = (Epi +mi)

1/2 , (3.56)

and V (p,k) is given by Eq.3.54.
Also di = ai +bi cosθ , with

a1 = 1, b1 =−p̃2k̃2,
a2 = k̃2, b2 = p̃2,
a3 = p̃2, b3 = k̃2,

a4 = p̃2k̃2, b4 =−1,

(3.57)

and p̃ j =
|p|
N2

p j

.

And , the 1CS equation in the helicity form is:(
(EB−Ep2− [Ep1−m1]) ψ1a(p)
(EB +Ep2− [Ep1−m1]) ψ1b(p)

)
=
∫

k
V̄
(

D1 D2
D3 D4

)(
ψ1a(p)
ψ1b(p)

)
, (3.58)
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with Di = Ai +Bi cosθ ,

A1 = Q, B1 =−R,
A2 = T2, B2 = S2,
A3 = S2, B3 = T2,

A4 = R , B4 =−Q.

(3.59)

and
Q = 1+ p̃1 p̃2k̃1k̃2, R = p̃1k̃1 + p̃2k̃2
S2 = p̃2− k̃1k̃2 p̃2, T2 = k̃2− p̃1 p̃2 ˜k2,

(3.60)

In both equations ∫
k
=
∫ d3

(2π)3. (3.61)

It is interesting to notice that equation 3.55 is obtained from equation 3.58 in the limit m1→ ∞.

For the numerical calculation and to obtain a discrete form of the equation, we applied the method
of splines with double integration (SDI) described in Chapter 2. As explained there, in this method
one starts by taking explicitly the expansion of the solution into cubic splines. Then one projects the
equation into those splines, which is done by multiplying both sides of the equation by a spline of
arbitrary order l, βl(p), and by integrating in p∫

p2
βl(p)d p. (3.62)

Although this procedure involves a double integral and is more complicated than the method of
splines with single integration (SSI), its results are more stable, because overlap integral of the two
splines covers the whole region where the solution is defined, as we saw in chapter 2.

With discretization the indexes l, j that correspond respectively to to the spline onto which the pro-
jection is made and the summation index of the function expansion, the numerical discrete equations
are {

λ

(
Al j 0
0 Al j

)
+

(
B11

l j 0
0 B22

l j

)
−
(

V 11
l j V 12

l j
V 21

l j B22
l j

)}(
α1

j
α2

j

)
= 0. (3.63)

Dirac Equation

For the Dirac equation λ = EB, i.e. gives the binding energies. And the other matrix elements are
defined by

Al j =
∫

∞

0
p2d pβl(p)β j(p), (3.64)

B11
l j =−B22

l j =−
∫

∞

0
p2d pEpβl(p)β j(p). (3.65)

Setting m2 = m and defining

fl(p) =
Np√
2Ep

βl(p), (3.66)

we have:(
V 11

l j V 12
l j

V 21
l j B22

l j

)
=−

4σ

π

∫
∞

0
∫

∞

0 d pdkV0(p,k) fl(p)
{

f j(k)
(

η1 η2
η3 η4

)
− f j(p)

(
η
′
1 η

′
2

η
′
3 η

′
4

)}
−

−
4σ

π

∫
∞

0
∫

∞

0 d pdkV1(p,k) fl(p) f j(k)
(

ζ1 ζ2
ζ3 ζ4

)
.

(3.67)
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The functions η and ζ are
ηi = ai +bi, ζi = bi, (3.68)

and ai and bi are the same of eq. (4). The prime on η ′ indicates that η
′
i = ηi(p, p), whereas

ηi(p,k). The functions V0 and V1 are given by

V0(p,k) =
1
2

∫ 1

−1
dz

p2k2

(p2 + k2−2pkz)2 =
p2k2

(p2− k2)2, (3.69)

V1(p,k) =
1
2

∫ 1

−1
dz

p2k2(z−1)
(p2 + k2−2pkz)2 =

1
2

pk
(p+ k)2−

1
8

ln

(
(p+ k)2

(p− k)2

)
. (3.70)

1CS Equation

For this equation, λ = µ = m1 +EB. The Al jare the same as in the Dirac case but the Bl j are now

B11
l j =−

∫
∞

0
p2d p(Ep1 +Ep2)βl(p)β j(p), (3.71)

B22
l j =−

∫
∞

0
p2d p(Ep1−Ep2)βl(p)β j(p). (3.72)

The equivalent of fl(p) is

Fl(p) =
Np1Np2√
4Ep1Ep2

βl(p), (3.73)

and the potential matrix is written as(
V 11

l j V 12
l j

V 21
l j B22

l j

)
=−

4σ

π

∫
∞

0
∫

∞

0 d pdkV0(p,k)Fl(p)

{
Fj(k)

(
η̄1 η̄2
η̄3 η̄4

)
−

Ep1

Ek1

Fj(p)

(
η̄
′
1 η̄

′
2

η̄
′
3 η̄

′
4

)}
−

−
4σ

π

∫
∞

0
∫

∞

0 d pdkV1(p,k)Fl(p)Fj(k)
(

ζ̄1 ζ̄2

ζ̄3 ζ̄4

)
.

(3.74)
with η̄i = Ai +Bi and ζ̄i = Bi. The meaning of the prime is the same as before and V0and V1 have

the same definitions.

As our potentials are Hermitian, i.e., Vi j (p,k;P) = Vji(k, p;P) the matrix arising from the linear
potential is symmetric. This last feature is particularly advantageous as it avoided the generation of
spurious complex solutions due to round-off errors.

In the next section we will present a discussion on the procedure to evaluate the double integrals,
specially because of the singularities arising from the V0 and V1 potentials.

Procedure for integration over the singularities

Lets take as example the following double integral:∫
∞

0

∫
∞

0
I(p,k)d pdk =

∫
∞

0

∫
∞

0
V0(p,k)F1(p)

(
F1(k)η1(p,k)−F1(p)η ′1(p)

)
d pdk, l = j = 1

(3.75)
and plot I(p,k) for a fixed k, for example k = 0.15. The plot exhibits the singularity at point p

(which moves as a function of k).
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Figure 3.16: Plot I(p,k) for k = 0.15.

Our strategy to compute the integral of I(p,k) over p, was to subdivide it in 3 regions as
suggested in the figure and, for small ε , to consider the integral in region ii as a Principal Value
Integral (we used a symmetric mesh to perform the integration).

Gauss Legendre Quadrature

To compute the integrals numerically we used the Gauss-Legendre Quadrature in which any inte-
gral of an arbitrary function f can be calculated through∫ 1

−1
f (x)dx≈

n

∑
i=1

ωi f (xi), (3.76)

for very large n, where xi are the Gaussian points and ωi the corresponding integration weights [3].
How large the value of n is needed for convergence depends on the behavior of the function.

As the figure suggest we divided the full integral into the integrals in regions I, II and III. Since
the Gaussian points, xi, are defined in the interval [0,1] and [−1,1] we made the following mappings
for the different integration regions on the variable p (corresponding to the discrete variable yi of a
numerical mesh of points):

• region I: xI
i ∈ [0,1]→ yi ∈ [0, p− ε[ xi→ yi = xi p;

• region II: xII
i ∈ [−1,1]→ yi ∈ [p− ε, p+ ε[ xi→ yi = p+ xiε;

• region III: xIII
i = ri ∈ [0,∞[→ yi ∈ [p+ ε,∞[ xi→ yi = (p+ ε)(ri +1).

In the last region ri are defined as xi ∈ [0,1]→ ri ∈ [0,∞[ xi→ ri = tan

(
πxi

2

)
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Level In this work ref.([38]) In this work ref.([38])
n SN = 12 SN = 12 SN = 20 SN = 20
4 2.11225 2.113 2.10694 2.109
3 1.80699 1.808 1.80727 1.808
2 1.44224 1.443 1.44232 1.443
1 0.93876 0.939 0.93867 0.940
-1 -0.93630 -0.936 -0.93630 -0.936
-2 -1.08500 -1.084 -1.08406 -1.084
-3 -1.17043 -1.170 -1.17296 -1.173
-4 -1.25905 -1.259 -1.23379 -1.233

Table 3.1: Comparison with ref.([38]) results (in GeV ) for the 1CS equation with σ = 0.2GeV 2, κ = 5.0 and
m2=0.325GeV/c2.

Level In this work ref.([38]) In this work ref.([38])
κ κ = 10.0 κ = 10.0 κ = 1.0 κ = 1.0
n SN = 12 SN = 12 SN = 12 SN = 12
4 2.07724 2.078 1.88090 1.881
3 1.78248 1.783 1.63183 1.632
2 1.43478 1.435 1.29244 1.293
1 0.96313 0.964 0.74397 0.745
-1 -1.09110 -1.009 -0.33407 -0.334
-2 -1.33336 -1.332 -0.34137 -0.341
-3 -1.51631 -1.515 -0.35430 -0.354
-4 -1.64306 -1.642 -0.37916 -0.379

Table 3.2: Comparison with ref.([38]) results (in GeV ) for 1CS equation with σ = 0.2GeV 2 and
m2=0.325GeV/c2 for κ = 10.0 and κ = 1.0.

3.2.2 Results for positive and negative energy states and wavefunctions

In this section we present the results obtained for the 1CS equation with the Splines+Gauss Leg-
endre quadrature method to account for the principal value integration just described. We also solved
the Dirac equation with the same method because, to check how numerically the 1CS equation tends
to the one-body (Dirac) limit. First of all, on tables 3.3, 3.1 and 3.2 we compare our results for the
energy states obtained with those from ref.([38]). For the CST case we show the results two cases
of the quark mass ratio (k = 1 and k = 10). The first conclusion is that our results are in very good
agreement with the ones published in the literature, and therefore our numerical method passed this
first test. Positive and negative energy eigenvalues for the 2 quark bound state were found, since the
two body equations are relativistic.

Besides the eigenvalues, we also calculated the eigenvectors of the Dirac and the 1CS equations.
By the definition given in Eq.3.63, the eigenvalue problem for the case of SN number of splines has
2SN eigenvalues and eigenvectors. From now on, we will assume the following short-hand notation
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Level In this work ref.([38])
4 1.94618 1.946
3 1.69508 1.695
2 1.39289 1.393
1 0.97542 0.976
-1 -1.24977 -1.248
-2 -1.57576 -1.574
-3 -1.83980 -1.838
-4 -2.08025 -2.078

Table 3.3: Comparison with ref.([38]) results (in GeV ) for the Dirac equation with σ=0.2GeV 2,
m2=0.325GeV/c2 and SN = 12.

for the eigenvectors 


α1

1
α1

2
...

α1
SN

≡−→α +


α2

1
α2

2
...

α2
SN

≡−→α −


, (3.77)

φ
+(p) =

SN

∑
j=1

α
+
j β j(p), (3.78)

φ
−(p) =

SN

∑
j=1

α
−
j β j(p). (3.79)

Since we are dealing with relativistic equations some of the eigenvalues are negative and the
upper and lower wavefunction components denoted by φ+ and φ− exist for both positive and negative
eigenvalues. In the non-relativistic limit φ− becomes zero as it should - we checked this numerically
- since they correspond to the projection of the two-body vertex function into the v-spinor part of the
off-shell-quark propagator. We show a series of the Dirac wavefunctions in Figs. 3.17, 3.18, 3.19 and
3.20; and for the 1CS equation in Figs. 3.21, 3.22, 3.23, 3.24, 3.25 and 3.26. We remark that the
number of nodes increases with the energy of the state, as it should. For positive-energy states φ+

dominates over φ−, while for negative-energy states φ− dominates over φ+.
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Figure 3.17: Dirac φ+(p) wavefunctions for the first positive energies. The parameters used were: σ =
0.2GeV 2 and m = 0.325GeV/c2.

Figure 3.18: Dirac φ−(p) wavefunctions for the first positive energies. The parameters used were: σ =
0.2GeV 2 and m = 0.325GeV/c2.

Figure 3.19: Dirac φ+(p) wavefunctions for the first negative energies. The parameters used were: σ =
0.2GeV 2 and m = 0.325GeV/c2.
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Figure 3.20: Dirac φ−(p) wavefunctions for the first negative energies. The parameters used were: σ =
0.2GeV 2 and m = 0.325GeV/c2.

Figure 3.21: 1CS φ+(p) and φ−(p) wavefunctions for E1. The parameters used were: σ = 0.2GeV 2 and
m = 0.325GeV/c2.

Figure 3.22: 1CS φ+(p) and φ−(p) wavefunctions for E−1. The parameters used were: σ = 0.2GeV 2 and
m = 0.325GeV/c2.
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Figure 3.23: 1CS φ+(p) wavefunctions for the first positive energies. The parameters used were: σ =
0.2GeV 2, κ = 5.0 and m2 = 0.325GeV/c2.

Figure 3.24: 1CS φ−(p) wavefunctions for the first positive energies. The parameters used were: σ =
0.2GeV 2, κ = 5.0 and m2 = 0.325GeV/c2.

Figure 3.25: 1CS φ+(p) wavefunctions for the first negative energies. The parameters used were: σ =
0.2GeV 2, κ = 5.0 and m2 = 0.325GeV/c2.
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Figure 3.26: 1CS φ−(p) wavefunctions for the first negative energies. The parameters used were: σ =
0.2GeV 2, κ = 5.0 and m2 = 0.325GeV/c2.

Convergence of the 1CS results

We analyse here very briefly the convergence of the solutions obtained for the 1CS equation. We
decided to check it by fixing the parameters: κ = 5.0 and m2 = 0.325GeV/c2 and varying the number
of splines. Tables 3.4 and 3.5 show the results obtained and on plot 3.27 we registered the difference
between the first eigenvalues computed with SN = 24 and SN = 36. The higher energy level demand
more caution for convergence with the number of splines. For the splines considered, although the
results are good, the convergence is not so good as for the SDI method for the NRSE in momentum
space. The reason is that we have not implemented procedures to remove the singularities from the
kernel of equations yet, as we did with the subtraction methods of Chapter 2 for the non-relativistic
case.

Figure 3.27: Study of convergence for the 1CS equation. This plot represents in the x axis the n principal quan-
tum number of the state and in the y axis the relative differences in % between the binding energies computed
with SN = 24 and SN = 36. The curve in blue refers to the positive energies and in red to the negative.
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Level SN = 8 SN = 12 SN = 16 SN = 20 SN = 24 SN = 36
En

36 38.1145942
35 20.0729985
34 16.7049198
33 15.7648817
32 14.0993175
31 11.6024919
30 11.1861743
29 10.8555549
28 10.5152114
27 9.2870255
26 8.3836147
25 8.0995645
24 25.2693254 7.0438661
23 10.8251524 6.6618381
22 10.5596630 6.0637717
21 8.5755602 5.5317100
20 20.9942414 7.2630647 5.2993690
19 8.8753511 7.1243854 5.1998769
18 8.8342537 6.3447416 4.6593971
17 6.9751274 5.5583593 4.6337476
16 16.7265183 5.8505350 5.2649128 4.2729295
15 7.0968303 5.7870880 4.8803692 4.0893409
14 6.9370091 4.9754331 4.4227815 3.7161481
13 5.4891908 4.3189851 4.1578734 3.6671803
12 12.4732195 4.5207315 4.2570958 3.9098239 3.3210493
11 5.3248963 4.4695719 3.7562447 3.5065532 3.2281931
10 5.0217462 3.7413943 3.3970389 3.4285409 2.9741776
9 3.9343332 3.3063672 3.2967678 3.1907196 2.8140910
8 8.2560359 3.2216499 3.1435465 3.0042649 3.0095363 2.5918884
7 3.5754572 3.1146194 2.7968488 2.8216146 2.8129097 2.3669719
6 3.1696573 2.6128892 2.6135514 2.5995324 2.6007084 2.1071024
5 2.5348226 2.3903388 2.3676555 2.3707630 2.3672803 1.8721491
4 2.1103270 2.1122511 2.1071361 2.1069555 2.1066746 1.8075597
3 1.8263340 1.8069905 1.8071113 1.8073761 1.8078660 1.4419878
2 1.4419153 1.4422402 1.4421523 1.4420646 1.4418909 1.0370765
1 0.9387625 0.9387569 0.9387657 0.9387507 0.9386402 0.9387535

Table 3.4: Accuracy of our method for solving the 1CS Equation. Positive Eigenergies up to SN = 36.
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Level SN = 8 SN = 12 SN = 16 SN = 20 SN = 24 SN = 36
En

-1 -0.9361628 -0.9362966 -0.9362966 -0.9363082 -0.9362978 -0.6716749
-2 -1.0929114 -1.0850072 -1.0841616 -1.0840662 -1.0840613 -0.8997735
-3 -1.1711214 -1.1704344 -1.1731693 -1.1729599 -1.1727269 -0.9363099
-4 -1.3456090 -1.2590466 -1.2381929 -1.2337902 -1.2335810 -1.0840120
-5 -1.4454967 -1.3127071 -1.2922883 -1.2830259 -1.2782671 -1.1735096
-6 -1.9850379 -1.4270717 -1.3388811 -1.3095924 -1.3082196 -1.2338045
-7 -2.8269357 -1.6001257 -1.4708601 -1.3881263 -1.3486912 -1.2776596
-8 -5.0103426 -2.0292152 -1.4822570 -1.4343209 -1.4177746 -1.3118599
-9 -2.6001656 -1.7627270 -1.5002432 -1.4247932 -1.3420469
-10 -3.3416160 -2.1327396 -1.6544335 -1.5198316 -1.3732911
-11 -4.4089398 -2.6081641 -1.9491895 -1.6081976 -1.3877307
-12 -7.3509439 -3.2077240 -2.3060457 -1.8451127 -1.4318024
-13 -3.9458226 -2.7314994 -2.1141866 -1.4818083
-14 -4.8561189 -3.2231635 -2.4543694 -1.4876623
-15 -6.0508905 -3.7854028 -2.8720972 -1.5536191
-16 -9.6752572 -4.4705401 -3.3587185 -1.6358861
-17 -5.2258807 -3.8794290 -1.8489583
-18 -6.3161068 -4.3838287 -2.0188938
-19 -7.6211149 -5.0089355 -2.2835073
-20 -11.9743115 -5.7791542 -2.6880544
-21 -6.6971410 -3.1681939
-22 -7.7429823 -3.5557290
-23 -9.2999136 -3.7286811
-24 -14.2693220 -4.1158862
-25 -4.6659391
-26 -5.4889149
-27 -6.4233767
-28 -7.4506469
-29 -8.6049824
-30 -9.8674012
-31 -10.2825782
-32 -10.9049592
-33 -12.5008710
-34 -14.7813571
-35 -19.9230530
-36 -21.1316267

Table 3.5: Accuracy of our method for solving the 1CS Equation. Negative energies up to SN = 36.
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En κ = 1.0 κ = 5.0 κ = 10 κ = 50 κ = 100 κ = 1000 Dirac
E4 1.88090 2.11225 2.07724 1.98091 1.96405 1.94787 1.94396
E3 1.63183 1.80699 1.78248 1.72044 1.70839 1.69657 1.69493
E2 1.29244 1.44224 1.43478 1.40555 1.39956 1.39364 1.39375
E1 0.74397 0.93876 0.96313 0.97463 0.97516 0.97543 0.97554
E−1 -0.33407 -0.93630 -1.09110 -1.21929 -1.23466 -1.24828 -1.24894
E−2 -0.34137 -1.08501 -1.33336 -1.53120 -1.55378 -1.57353 -1.57651
E−3 -0.35430 -1.17043 -1.51631 -1.78123 -1.81106 -1.83700 -1.83933
E−4 -0.37916 -1.25905 -1.64306 -2.01380 -2.04839 -2.07741 -2.06676

Table 3.6: Dirac limit of the 1CS equation. The light quark mass is varied in the CST equation. Comparison
of the 1CS results for 6 increasing mass ratios with the Dirac results (last column).For these computations m2
was fixed with m2 = 0.325GeV/c2. The number of splines used were SN = 12.

1CS One-body (Dirac) Limit

In table 3.6 we show the results of the CST for the excited states as one increases the mass ratio
κ = m1/m2. The values, just as expected, tend to the one-body limit Dirac results, for both positive
and negative energies. This is illustrated in Figs. 3.28 and 3.29.

Figure 3.28: Dirac limit of the 1CS Equation for the positive states. The heavy quark mass is varied in the CST
equation. Comparison of the 1CS with the Dirac results as a function of the quark mass ratio.

Non-relativistic reduction of the 1CS and Dirac equations

Dirac case Another interesting limit to be investigated is when the particle’s mass in the Dirac
equation increases. We did that and compared it with the NRSE equation results obtained in Chapter 2
through the same SDI Method, for matching parameters. The results are given on tables 3.7 and 3.8 and
in Fig.3.30, where the relative difference between the predicted masses in one and the other methods
are plotted in terms of the log(m). There is one important note in the study of this limit: the values
which are being compared are the predicted masses corresponding to the positive solutions of the
Dirac equation. The negative eigenvalues still appear in our numerical solutions, but the corresponding
eigenvectors tend to zero, as expected. Fig.3.31 illustrates precisely this.
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Figure 3.29: The same as Fig. 3.28 but for the negative states.

SDI mR = 4.65 mR = 10 mR = 20 mR = 100 mR = 1000
1 2.338108 9.779071 20.37115 40.29458 200.17227 2000.36596
2 4.087949 10.13761 20.64892 40.51505 200.30120 2000.40182
3 5.520560 10.43115 20.87633 40.69555 200.40676 2000.43117
4 6.786708 10.69058 21.07732 40.85507 200.50005 2000.45711

Table 3.7: Meson masses (in GeV/c2) according to the NRSE: SDI SN = 64.

m = 4.65 m = 10 m = 20 m = 100 m = 1000
1 10.27543 20.58412 40.46599 200.28892 2000.14181
2 10.69364 21.02098 40.81371 200.56634 2000.31190
3 10.99657 21.37684 41.12727 200.81554 2000.58749
4 11.24787 21.69625 41.53684 201.03196 2000.96253

Table 3.8: Meson masses (in GeV/c2) according to the Dirac equation for increasing m. Parameters: σ =
0.2GeV 2 and SN = 12.

m2 = 4.65 m2 = 10 m2 = 20 m2 = 100 m2 = 1000
1 9.38050 20.58430 40.46615 200.28900 2000.14185
2 9.41501 21.02132 40.81397 200.56646 2000.31192
3 9.44001 21.37737 41.12751 200.81595 2000.58750
4 9.46075 21.69668 41.53699 201.03214 2000.96253

Table 3.9: Meson masses (in GeV/c2) according to the 1CS equation or increasing m2 and with fixed κ = 1000.
Parameters: σ = 0.2GeV 2 and SN = 12.
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Figure 3.30: Non-relativistic reduction of the Dirac Equation. Relative deviations between the Dirac and the
Schrödinger equation as a function of the "light" mass for several states.
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Figure 3.31: Dirac wave functions for negative energy states with increasing mass values.
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Figure 3.32: Non-relativistic reduction of the 1CS Equation. Relative deviations between the 1CS and the
Schrödinger equation as a function of the mass for several states

1CS case Since we have already shown the one-body (Dirac) reduction of the 1CS equation, to
show the non-relativistic limit we only have to increase in the last one the second quark mass. The
final results are explicitly shown on table 3.9 and fig.3.32.
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Chapter 4

Conclusions and Outlook

This work is the first phase of a phenomenological study of mesons within a relativistic framework,
the CST, where the dynamical equation is a quasi-potential equation in momentum space, that is to
say, a three-dimensional reduction of the Bethe-Salpeter equation. Quark confinement is obtained by
using a linear quark-antiquark potential, whose momentum-space representation is somewhat subtle,
but leads to a rather elegant final equation. Although the fundamental theory QCD is used only to
suggest the form of the confining interaction between quarks, the formalism also satisfies another very
important feature of hadronic structure: chiral symmetry breaking.

The CST has already been applied to the study of mesons in the past, however, so far the con-
stituent quark mass has been treated as a constant (ref.[3, 8, 9]), or as a phenomenological function
not related to the kernel (ref.[10]), and therefore these model calculations are not entirely satisfactory.
A consistent implementation of the dynamical breaking of chiral symmetry requires that the dressed
quark mass is calculated from the self-interaction of the bare quark through the same confining inter-
action that acts between the different quarks in a meson. For the special case of the pion, it was shown
analytically that, in the chiral limit of vanishing bare quark mass, the two-body CST equation yields
a massless pion solution, while the quarks acquire a non-zero dressed mass through dynamical chiral
symmetry breaking.

A first step in the implementation of this program was performed in a very recent paper (ref.[39]),
where the quark self-energy in CST was studied for a simple toy model. The next step will be the
calculation of the quark self-energy with more realistic interaction models that will then be used to
calculate the meson spectrum and the meson wave functions. Moreover, we expect that by connecting
the dressed quark mass and the confining interaction we obtain additional useful constraints on the
parameters of the interaction model that do not emerge automatically from fits to the spectroscopic
data.

A very important part of this program is the development of reliable numerical techniques to solve
the CST equations, which have the form of integral equations with a singular kernel in momentum
space. The best way to test numerical methods is to apply them to problems where an exact solution is
known. For the CST equations no analytic solutions have been found so far, but the numerical solution
of integral equations with similar singularities can also be studied with the non-relativistic Schrödinger
equation in its momentum-space form. Apart from serving as test problems, the results can also be
interesting by themselves, because for heavy-quark systems the non-relativistic description is known
to be a good approximation, and a comparison with experimental data becomes meaningful.
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In this work, we started with a series of tests of numerical algorithms by solving the non-relativistic
differential Schrödinger equation for a linear confining interaction in coordinate space. For s-waves
the exact solutions are known analytically, which allows us to estimate the quality of our numerical
solutions. The same algorithm is then applied to obtain solutions for higher partial waves, for which no
analytic solutions exist, and which can then be used as benchmark values for our numerical solutions
of the corresponding integral equation in momentum space.

We proceeded with the solution of the Schrödinger equation in momentum space for the same
linear potential. Since its direct Fourier transform does not exist, the linear potential has been used
in previous work mostly in a modified, screened form, which introduces a dependence on a screening
parameter. An unscreened formulation has been achieved as well in the context of CST calculations.
However, in all cases the resulting equations contain a singular kernel. The singularity is of principal-
value type and can be integrated, but it requires special treatment and complicates the numerical
solution considerably.

The main new contribution of this work is the reformulation of the Schrödinger equation with an
unscreened linear potential in momentum space into a form where all singularities are eliminated from
the kernel. The numerical solution of this equation requires less effort and computing time than the
singular versions. For this purpose we used two different techniques, called SSI and SDI, based on the
expansion of the wave function in a basis of B-splines, and compared the results to the corresponding
values already obtained in coordinate space. SSI requires single integrations over the kernel multiplied
with spline functions, whereas SDI demands the evaluation of double integrals. SSI is much faster than
SDI, but for the same number of spline basis functions its results are less accurate then the ones of
SDI, which in turn shows a very impressive rate of convergence and overall stability. For some cases
with higher partial waves, SSI did not reach a converged result. However, there are ways to improve
SSI which we did not yet have time to explore.

We are confident that the method that eliminated the singularities from the nonrelativistic kernel
can also be used to do the same in the relativistic kernel of the CST equation. This task is planned for
the near future. In this work, we decided to revisit first the work of ref.[38] where the relativistic quark-
antiquark bound-state problem was solved in a somewhat simplified form (retardation was neglected)
with the Dirac and 1CS equations. We obtained very good agreement of our results for the bound-
state energies, which in the relativistic case are both positive and negative, with the results reported in
ref.[38].

In addition to these tests that confirm the validity of our numerical methods, we checked whether
the solutions of the 1CS and Dirac equations behave as expected in certain limits. First, in the limit of
one mass tending to infinity, the 1CS results should become equal to the Dirac results. This is called
the one-body limit, and by fixing one quark mass and making the other one heavier and heavier, i.e.
by increasing the mass ratio, we see that the bound-state energies indeed converge towards the Dirac
energies. In fact, the 1CS equation works particularly well for the description of heavy-light quark
systems, where it is expected to be a very good approximation for the more general two-channel CST
equation.

Second, in the limit of all quark masses becoming very large, both relativistic equations should
approach the same nonrelativistic limit, namely the Schrödinger equation. Again, we find that the
numerically obtained energies of the Dirac and 1CS equations indeed tend towards the Schrödinger
energies when the quark masses are increased. It also confirms that our relativistic generalization of
the linear potential behaves correctly in the nonrelativistic limit.
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4 Conclusions and Outlook

We believe that this work will enable us to increase the efficiency of computer codes required to
solve more realistic models involving a linear confining interaction within the CST framework in the
near future. We are particularly interested in the light quark systems, where relativistic effects are
large, and where a two-channel CST equation (2CS) has to be applied. Once a parametrization of the
interaction model is found that provides a good description of the meson spectrum, the corresponding
meson wave functions can be used to calculate many interesting properties of the mesons themselves
or of reactions in which they participate.
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Appendix A

1CS and Dirac equations in Helicity
Representation

In this Appendix we present the steps followed to get the helicity form of the Dirac and 1CS
equations.

We start by rewriting Eq.3.19 here for convenience:

Ψ(p,λ )(m2− 6 p2) =−
∫ d3k

(2π)3

V (p,k)√
4Ep1Ek1

∑
λ ′

ū(p,λ )Ou
(
p,λ ′

)
Ψ(k,λ ′)O. (A.1)

We can now expand the wavefunction and the projection operator in terms of the helicity spinors
(tableA.1) given by

u+ (p,λ j)≡ u(p,λ j) = Np j

(
1

2λ p̃ j

)
χ

λ j , (A.2)

and

u− (p,λ j)≡ v(−p,λ j) = Np j

(
−2λ p̃ j

1

)
χ

λ j , (A.3)

with

Np j = (Ep +m)1/2 , p̃ j =
|p|
N2

p j

. (A.4)

The wavefunction can be expanded using the decomposition of the propagator into ρ spin contri-
butions (ref.[35]):

(m2+ 6 k2)

m2
2− k2

2
=

1
2Ek

∑
λ2

[
u(k,λ2) ū(k,λ2)

Ek2− k20− iε
−

v(−k,λ2) v̄(−k,λ2)

Ek2 + k20− iε

]
. (A.5)

External quarks Internal quarks

λi =
1
2
;

(
1
0

)
λ
′
i =

1
2
;

(
cos(θ/2)
sin(θ/2)

)
λi =−

1
2
;

(
1
0

)
λ
′
i =−

1
2
;

(
−sin(θ/2)
cos(θ/2)

)

Table A.1: Helicity spinors.
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Using this in

Ψ(k,λ ) =
1

√
2Ek1

ū(k,λ )Γ(k)
m2+ 6 k2

m2
2− k2

2
, (A.6)

it can be shown that the wavefunction has the following form

Ψ(p,λ ) = ∑
ρλ2

Ψ
ρ

λλ2
ūρ (p,λ2) . (A.7)

Furthermore, the most general form of the pseudoscalar vertex function with particle 1 on shell is

ū+ (p,λ )Γ(p) = ū+ (p,λ )
{

Γ1γ
5 +Γ1γ

5 (m2− 6 p2)
}

(A.8)

and these Dirac operators are built only from the 2×2 matrices 1 and σ .p= 2λ p. Therefore in helicity
space the helicity is conserved and an explicit calculation shows that

ū+ (p,λ )Γ(p)uρ (p,λ2) = δλλ2(2λ )δ+pΓ
ρ(p), (A.9)

where Γρ(p) are independent of the helicity. Hence Eq.A.7 can be writen as

√
2Ep2Ψ(p,λ ) =

1√
4Ep2Ep1

{
ψ1a(p)ū− (p,λ )+2λψ1b(p)ū+ (p,λ )

}
, (A.10)

where

ψ1a =−
Γ−

Ek2 +Ek1−µ
, ψ1b =

Γ+

Ek2−Ek1 +µ
. (A.11)

Bringing all of these elements together gives the helicity form of the single channel spectator
equation (

(EB−Ep2− [Ep1−m1]) ψ1a(p)
(EB +Ep2− [Ep1−m1]) ψ1b(p)

)
=
∫

k
V̄
(

D1 D2
D3 D4

)(
ψ1a(p)
ψ1b(p)

)
, (A.12)

with,
A1 = Q, B1 =−R,
A2 = T2, B2 = S2,
A3 = S2, B3 = T2,
A4 = R. B4 =−Q.

(A.13)

and
Q = 1+ p̃1 p̃2k̃1k̃2, R = p̃1k̃1 + p̃2k̃2
S2 = p̃2− k̃1k̃2 p̃2, T2 = k̃2− p̃1 p̃2 ˜k2.

(A.14)

The Dirac equation, Eq.3.55,(
(EB−Ep2) ψ1a(p)
(EB +Ep2) ψ1b(p)

)
=
∫

k
V̄
(

d1 d2
d3 d4

)(
ψ1a(p)
ψ1b(p)

)
, (A.15)

and di = ai +bi cosθ , with
a1 = 1, b1 =−p̃2k̃2,
a2 = k̃2, b2 = p̃2,
a3 = p̃2, b3 = k̃2,

a4 = p̃2k̃2, b4 =−1.

(A.16)

is obtained from equation 3.58 in the limit m1→ ∞.
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Appendix B

Results of the NRSE in p-space

In this appendix we present the results for the binding energies and some wavefunctions obtained
as a solution of the NRSE in momentum space. The complete discussion is on Chapter 2 of this thesis.

For all the plots in the figures we have adopted the convention that the wavefuntions are organized
from darker to lighter in color, according to increasing n.
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Figure B.1: SSI method: wavefunctions of s-state for the first 4 excited states: φ1(p), φ2(p), φ3(p) and φ4(p).
The wavefunctions are normalized and computed for SN=8.
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Figure B.2: SSI method: wavefunctions of s-state for the first 4 excited states: φ1(p), φ2(p), φ3(p) and φ4(p).
The wavefunctions are normalized and computed for SN=12.
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Figure B.3: SSI method: wavefunctions of s-state for the first 4 excited states: φ1(p), φ2(p), φ3(p) and φ4(p).
The wavefunctions are normalized and computed for SN=64.
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Figure B.4: SDI method: wavefunctions of s-state for the first 4 excited states: φ1(p), φ2(p), φ3(p) and φ4(p).
The wavefunctions are normalized and computed for SN=8.
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Figure B.5: SDI method: wavefunctions of s-state for the first 4 excited states: φ1(p), φ2(p), φ3(p) and φ4(p).
The wavefunctions are normalized and computed for SN=12.
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Figure B.6: SDI method: wavefunctions of s-state for the first 4 excited states: φ1(p), φ2(p), φ3(p) and φ4(p).
The wavefunctions are normalized and computed for SN=64.
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Figure B.7: SDI method: wavefunctions of p-state for the first 4 excited states: φ1(p), φ2(p), φ3(p) and φ4(p).
The wavefunctions are normalized and computed for SN=8.
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Figure B.8: SDI method: wavefunctions of p-state for the first 4 excited states: φ1(p), φ2(p), φ3(p) and φ4(p).
The wavefunctions are normalized and computed for SN=12.
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Figure B.9: SDI method: wavefunctions of p-state for the first 4 excited states: φ1(p), φ2(p), φ3(p) and φ4(p).
The wavefunctions are normalized and computed for SN=16.
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Figure B.10: SDI method: wavefunctions of p-state for the first 4 excited states: φ1(p), φ2(p), φ3(p) and
φ4(p). The wavefunctions are normalized and computed for SN=64.
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Figure B.11: SDI method: wavefunctions of d-state for the first 4 excited states: φ1(p), φ2(p), φ3(p) and
φ4(p). The wavefunctions are normalized and computed for SN=8.
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Figure B.12: SDI method: wavefunctions of d-state for the first 4 excited states: φ1(p), φ2(p), φ3(p) and
φ4(p). The wavefunctions are normalized and computed for SN=12.
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Figure B.13: SDI method: wavefunctions of d-state for the first 4 excited states: φ1(p), φ2(p), φ3(p) and
φ4(p). The wavefunctions are normalized and computed for SN=64.
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En SN=8 SN=12 SN=16 SN=20 SN=24 SN=36 SN=48 SN=64 SN=128

1 2,3384020597595 2,337773115545 2,338164064854 2,33813803124 2,33812577370 2,338113158792 2,338109894513 2,3381084752377 2,3381075463083
2 4,0783737455097 4,084287309334 4,086822448649 4,08736493260 4,08760729356 4,087845067194 4,087904454220 4,0879300820659 4,0879469328103
3 5,5272928297424 5,498804704734 5,511068342230 5,51561391379 5,51766911030 5,519681269103 5,520181769503 5,5203973016507 5,5205387744622
4 6,6554600447390 6,739238924299 6,752453890811 6,76799567972 6,77580798926 6,783437674101 6,785306934805 6,7861068790652 6,7866302186971
5 7,5524534941881 7,636142464821 7,842378784548 7,89199368955 7,91424576852 7,935361390988 7,940402941359 7,9425385541273 7,9439272899154
6 10,459592591898 8,627944862582 8,719247110596 8,89078637841 8,95334530954 9,003030396867 9,014395427188 9,0191408921972 9,0221984002601
7 16,826974262827 10,51738196664 9,841122172538 9,83777108206 9,90911639081 10,00107962734 10,02396089403 10,033334689880 10,039297596080
8 18,168023938449 12,24293461056 10,98527791900 10,7655586757 10,7883564710 10,93644072286 10,97922082528 10,996290065901 11,006968757996
9 13,11660428370 11,48032440390 11,1589393730 11,3626372307 11,81100480396 11,88616692342 11,915477358823 11,933432582033
10 17,03522605846 13,51112206389 12,6083494315 12,3686364687 12,63069389829 12,74772679426 12,795934534223 12,824703724284
11 24,94569787268 15,99902764075 14,4097845614 13,7964505416 13,34479374741 13,56437270311 13,640934365945 13,685327112180
12 38,08735195186 19,14681127027 15,8380953630 14,0607560315 13,96576104115 14,33493186987 14,452326618823 14,518818928662
13 20,42071832680 16,5070815080 15,4717723668 14,91005941592 15,04360050453 15,230664133359 15,327944939007
14 23,76494675848 18,9294872384 17,3705679426 15,44406143100 15,69631140784 15,975141236720 16,114903276009
15 33,03505414184 21,7861034256 19,4996139360 16,11591208774 16,44892102567 16,684144259585 16,881448050657
16 65,37048409944 25,3636152394 21,8896009359 17,47536616144 16,77760644795 17,355187140643 17,628974506670
17 30,5476537533 21,9537583646 18,97585198445 17,50593841001 17,962779625719 18,358578030672
18 30,9623803545 24,5904615708 19,86757761730 18,61996233119 18,554420936449 19,071094472801
19 41,0782895875 27,7379872151 20,60880452996 19,53057487788 19,239777168758 19,767126309132
20 99,9770805518 31,6854156280 22,37186879457 19,85573863512 19,452243231864 20,447057201081
21 37,3459739049 24,26824254899 21,19373920056 20,264156449951 21,111056069643
22 43,8070298232 26,30142397689 22,62687248340 21,283708586909 21,759070472117
23 49,0980936327 28,48113843846 24,15228640326 21,772069498405 22,390807589672
24 141,893368671 28,64004492127 24,62172285617 22,393813234089 23,005699068231
25 30,81632229007 25,76858315342 23,580779716260 23,602849411301
26 33,32675543159 27,47653163533 24,838590398534 24,180972597116
27 36,03501662024 29,27680544985 25,791490799291 24,738067461293
28 38,98960782017 31,17229582888 26,164007880671 25,271554477172
29 42,27562408939 33,16496964121 27,555024488816 25,784622207820
30 46,10082644827 33,42594028621 29,010802915448 26,260012921457
31 47,24296722217 35,25977563756 30,530765959086 26,674097081211
32 50,94688180170 37,46005664151 32,022242408808 27,216893323699
33 57,72028280862 39,77348245237 32,115214431717 27,566697146361
34 73,07549985733 42,20582924934 33,764287018845 27,932821205853
35 95,98499884821 44,76939520409 35,479055369932 28,694492478719
36 311,4528986379 47,47604157893 37,260103751210 29,370933344316
37 49,50517787059 39,109174439459 29,517882434454
38 50,34889793270 41,027190744523 30,387516457626
39 53,41969898977 41,807614597996 31,297816420885
40 56,75087917437 43,016589614417 31,934097514400
41 60,46573058213 45,078628018387 32,245252868369
42 64,83736166129 47,216551314647 33,227513841177
43 70,37450448459 49,432062376238 34,242980573382
44 78,01031703391 51,729436465956 35,290440723612
45 82,64480619784 54,111144493008 35,318846221998
46 96,98850738747 56,582919766053 36,369004444019
47 168,5116689963 57,920535508045 37,477964342991
48 546,6941285430 59,148779293184 38,616808354336
49 61,816886185782 39,712395587161
50 64,594732950626 39,785108562655
51 67,495639941039 40,982580916630
52 70,536078096232 42,208970449409
53 73,744129039809 43,464146347649
54 77,165525363116 44,747969007243
55 80,886623384768 45,409153701050
56 85,078987299698 46,060419817532
57 86,700971990577 47,401440290919
58 90,063636616394 48,771100249235
59 96,322095056548 50,169400387601
60 104,93967761838 51,596484912218
61 128,82689572880 52,851863892962
62 145,39687716659 53,052398758874
63 296,78602988505 54,537352402478
64 962,49612288683 56,051424284341
65 57,594886897025
66 59,167844122259
67 60,770628887793
68 62,403364243158
69 62,713951329396
70 64,066443911035
71 65,760005151838
72 67,484504292894
73 69,240088939019
74 71,027280941905
75 72,846235441821
76 74,697543567036
77 76,050400858214
78 76,581366379004
79 78,498368636753
80 80,448717202324
81 82,433155204824
82 84,451857157773
83 86,505649505544
84 88,594718928927
85 90,719980225150
86 92,881640374414
87 94,583495834644

Eigenvalues SSI Method for the s-sates (l=0)



88 95,080707692533
89 97,317422489731
90 99,592892248992
91 101,90741027983
92 104,26219033137
93 106,65760742918
94 109,09499226278
95 111,57484284939
96 114,09862534720
97 116,66702011782
98 119,28166346277
99 121,27793633304
100 121,94350506540
101 124,65441819816
102 127,41575473688
103 130,22975548263
104 133,09839168225
105 136,02453143587
106 139,01115487856
107 142,06229341508
108 145,18271792289
109 148,37880341012
110 151,65889305513
111 155,03458357007
112 158,52246253766
113 161,59545418249
114 162,14740477638
115 165,94840991755
116 169,98913609604
117 174,37491434102
118 179,27056872179
119 184,89785884771
120 191,53519095890
121 199,73041377275
122 211,85220420130
123 226,53397038539
124 256,01257089367
125 341,10415390562
126 573,26379077447
127 1170,2998882305
128 3792,9741246228



En SN=8 SN=12 SN=16 SN=20 SN=24 SN=36 SN=48 SN=64

1 2,338641911571 2,338121145436 2,338108071695 2,338107476391 2,338107319344 2,338106842481 2,338107082028 2,3381076139052

2 4,104605406173 4,088498155613 4,087975685912 4,087952262194 4,087949927110 4,087947303853 4,087948766025 4,0879494012161

3 5,636686643236 5,527016818404 5,520928028822 5,520600545822 5,520567975834 5,520558825578 5,520558192518 5,5205596161544

4 6,851432578553 6,794183309139 6,788207811763 6,787046383013 6,786786356487 6,786709863026 6,786706451331 6,7867079447365

5 8,601678802416 8,002341776532 7,956597879148 7,947219120766 7,944766321339 7,944146073199 7,944134735283 7,9441334370254

6 11,76086845608 9,626868191655 9,156257589949 9,046240808031 9,026387769003 9,022726161627 9,022656526553 9,0226512089781

7 17,40854569062 11,43507938292 10,27339451995 10,08341475071 10,04866914482 10,04051039192 10,04019998986 10,040176685550

8 32,97639062054 12,09983455352 11,14756505821 11,02755595659 11,02885416214 11,00986716602 11,00862461387 11,008533313462

9 14,99345285926 12,94173593323 12,31832339885 12,10528204098 11,94006778316 11,93634316218 11,936044261476

10 19,12242065620 15,30924859364 13,99754171539 13,13804707193 12,83900171678 12,82976902604 12,828859455181

11 26,28313014134 18,20705509677 14,48775525493 13,80088912336 13,73222294402 13,69417946922 13,691710139353

12 67,95036395969 18,70315748598 16,17722120768 15,32285244232 14,62556088101 14,53495748873 14,528387460491

13 21,84566970366 18,60985206889 17,22789329380 15,36908620543 15,35980446632 15,342090811871

14 26,66624733017 21,45802084723 19,39535669399 16,31503104652 16,16614255371 16,135714226960

15 35,08759399488 24,82803144415 19,56451247957 17,61213380809 16,94683776623 16,912121178910

16 115,8548936859 28,04345359213 21,89064227260 18,40664908020 17,80992192952 17,675088662107

17 28,94523452191 24,69982841160 19,16110202018 18,70009371661 18,428872142894

18 34,32652508943 27,91691837939 20,83139125428 19,16649971454 19,167323590164

19 43,84951474722 31,67072039365 22,66758413944 20,23175176680 19,903469145873

20 176,6162762657 36,20828892112 24,66277732512 21,57564733198 20,706508430655

21 39,49991798534 25,50973027063 22,78777278905 21,394946610965

22 42,06732653964 26,82347681845 23,05689685091 21,957743274871

23 52,58175627162 29,16009385517 24,63912273294 22,972066989127

24 250,2107495644 31,68914717595 26,33402882572 24,156337873160

25 34,43270198396 28,13731415690 24,476314141718

26 37,42110173447 30,04990248134 25,456974869430

27 40,69695958819 30,06359756293 26,829250711645

28 41,29526905298 32,07857844523 28,280740120350

29 44,32247675098 34,22549531397 29,613038905981

30 48,39330236424 36,49845055230 29,808345582528

31 53,06595029596 38,90591227139 31,410704936008

32 58,61412073538 41,45838909145 33,088357002891

33 65,58759205825 43,58484876267 34,842088675274

34 78,66728848522 44,16894455129 36,673375097803

35 86,17242399425 47,05397029790 37,888076447775

36 547,9113460738 50,13435805241 38,584210773278

37 53,43730126679 40,577082752371

38 56,99915472546 42,654980640596

39 60,87010629149 44,821425471997

40 65,12204242950 47,080525876505

41 69,86208132564 49,437055557508

42 71,94694119911 51,560013261992

43 75,25625996012 51,896561928425

44 81,57585479045 54,465509830224

45 89,35573902230 57,151472775349

46 104,6563636347 59,963390429427

47 151,1206955331 62,911914197347

48 960,9289618203 66,009885207108

49 69,272997051948

50 72,720742394388

51 75,984271354399

52 76,377782450942

53 80,27596905441

54 84,45738426603

55 88,97895976769

56 93,91954507516

57 99,39084868044

58 105,5555395127

59 112,6670856884

60 121,2273302542

61 126,3685637776

62 139,2304054680

63 266,0324623615

64 1690,959191755

Eigenvalues SDI Method for the s-sates (l=0)



En SN=8 SN=12 SN=16 SN=20 SN=24 SN=36 SN=48 SN=64 SN=128

1 3,3629581233162 3,361313498663 3,361258899168 3,36125579460 3,36125710940 3,361258447767 3,361257886853 3,3612581587507 3,3612560529089

2 4,9275156189940 4,886359031196 4,884552338872 4,88446308413 4,88445601380 4,884455949545 4,884455574861 4,8844557966980 4,8844533142443

3 6,3685832786372 6,220271335625 6,208522363056 6,20773572329 6,20764916454 6,207627592586 6,207627360664 6,2076271225431 6,2076250027691

4 7,5189688277315 7,407860842544 7,408076087756 7,40649535405 7,40587129492 7,405674452817 7,405669742940 7,4056691183365 7,4056674604223

5 9,7047616575053 8,702469383179 8,554389205507 8,52353796862 8,51678111304 8,515269990782 8,515241309248 8,5152381797407 8,5152366739009

6 13,334877991555 10,55401665845 9,792736322343 9,59970902909 9,56431143542 9,557774056647 9,557632762803 9,5576208223840 9,5576184522207

7 19,738503317373 11,80921089448 10,68467659097 10,5699777793 10,5557022494 10,54718825874 10,54657793333 10,546530736931 10,546524790764

8 34,501949899507 13,20832214765 11,89573406856 11,5971351101 11,5492404355 11,49382623823 11,49161027856 11,491447281443 11,491429971704

9 16,51839169314 13,96058364303 13,0898022942 12,6924209925 12,40538257173 12,39978892812 12,399270428987 12,399220760086

10 21,19115669380 16,53863684009 14,5065831571 13,4469618230 13,29373105127 13,27672385744 13,275234247505 13,275099150999

11 29,50951772365 18,91284359057 15,0629480446 14,4602639780 14,19476874968 14,12737761724 14,123463154289 14,123114679939

12 69,40763713912 19,70589752745 17,2554428194 16,1910037127 15,03017615080 14,95808402957 14,947352609362 14,946497342898

13 23,68046843121 19,8584372356 18,2216408961 15,78689841586 15,77536200220 15,749873742443 15,747875657793

14 29,13122479972 22,9063051946 19,6698108141 16,91963286733 16,56455943366 16,533823876986 16,529425311978

15 39,19191572805 26,5365909168 20,5371939730 18,27909531463 17,36316957674 17,302274547424 17,292973688296

16 117,2797580413 28,2543098053 23,1510942031 18,53309107958 18,28736084688 18,059829834566 18,040075908226

17 31,0336565866 26,1249809941 19,94623171343 18,95232558939 18,807321468231 18,772071298372

18 37,1157478893 29,5465352110 21,69723046804 19,62613121439 19,537046143083 19,490127414242

19 48,8210444445 33,5732954289 23,60746814903 20,87130121792 20,298495566861 20,195275076560

20 178,022490160 38,5146347650 25,59015126005 22,27998572497 21,107703656715 20,888438223217

21 39,6992097550 25,68037148455 22,84471589466 21,634812464869 21,570460783278

22 45,1268956971 27,91950004858 23,81308682566 22,425056148299 22,242132936494

23 58,4152433890 30,34280740024 25,45102905330 23,543668227336 22,904218148385

24 251,604903867 32,96725715153 27,19752158556 24,497719333536 23,557483003271

25 35,81797365601 29,05300519075 24,796477818630 24,202730011941

26 38,92955194730 30,12289305414 26,121019696792 24,840829676831

27 41,40298135985 31,02035358638 27,532270452535 25,472733476095

28 42,35094248940 33,10391684467 29,020665003779 26,099517002173

29 46,15431087861 35,30965311862 29,653850093318 26,722553643117

30 50,45198318823 37,64504532131 30,584490633743 27,342625544607

31 55,43104690317 40,11941409074 32,223222924392 27,958659578521

32 61,43542228052 42,74429729850 33,937492422721 28,577301247933

33 69,24191134072 43,65764575910 35,728469838318 29,206391537412

34 86,35111350891 45,53407416975 37,597879451836 29,788896801603

35 87,07664964263 48,50683907317 37,934058438445 30,355188677107

36 549,2861624773 51,68579915930 39,547948133275 31,078090566386

37 55,10134334327 41,581392202073 31,697867601449

38 58,79439597590 43,701441534217 32,006706404647

39 62,82189845047 45,911879225907 32,898559141324

40 67,26609534109 48,217106329944 33,875508352572

41 72,04393285441 50,622233470003 34,427832600878

42 72,25093517793 51,612903409672 34,901197000030

43 77,97362693958 53,133200985494 35,966908559513

44 84,77506673196 55,756940380839 37,070760464934

45 93,40966786058 58,501592064182 38,201589401762

46 115,6430016560 61,376792965050 38,210814728162

47 151,2886166302 64,394064869009 39,385233972434

48 962,2945138601 67,567352029140 40,593689628587

49 70,913772080185 41,835395943866

50 74,454689859927 43,109937974578

51 76,048700386193 43,204946349665

52 78,217260661295 44,417045004259

53 82,236725163211 45,756558003072

54 86,559877819239 47,128409939453

55 91,250395628751 48,532610083858

56 96,397225332281 49,791111338768

57 102,12849723247 49,969233268867

58 108,63643000819 51,438411571092

59 116,23487445716 52,940328172701

60 125,65504377350 54,475214065553

61 126,45707964811 56,043345073902

62 153,66349823931 57,645038081564

63 266,19218199081 58,528250012764

64 1692,3179941152 59,280650232902

65 60,950577989355

66 62,655257026070

67 64,395162586993

68 66,170807713292

69 67,982745519629

70 69,831571778094

71 70,312829787870

72 71,717924002941

73 73,642483736939

74 75,605978491746

75 77,609186410730

76 79,652936107887

77 81,738109881655

78 83,865651383629

79 86,036565888671

80 86,604342430267

Eigenvalues SDI Method for the p-sates (l=1)



81 88,251925989820

82 90,512877356967

83 92,820648169616

84 95,176547870624

85 97,581984040704

86 100,03846655992

87 102,54761718488

88 105,11118550007

89 107,73105944444

90 109,90170305056

91 110,40928027531

92 113,14806441928

93 115,94981903322

94 118,81717029024

95 121,75299110262

96 124,76043427802

97 127,84297591813

98 131,00445220696

99 134,24913531271

100 137,58177111750

101 141,00769694468

102 144,53290964112

103 144,78700945865

104 148,16421802006

105 151,90934915069

106 155,77718117555

107 159,77792143999

108 163,92344895414

109 168,22759603534

110 172,70664432929

111 177,37986512131

112 182,27018757280

113 187,40513877703

114 192,81787198102

115 198,54861526689

116 200,48242031700

117 204,64653967581

118 211,17211348508

119 218,20074068383

120 225,82906236356

121 234,19013732158

122 243,51045216192

123 254,57834532423

124 298,18557832292

125 305,49117590341

126 497,84034266072

127 1048,8584287729

128 6661,8174777996



En SN=8 SN=12 SN=16 SN=20 SN=24 SN=36 SN=48 SN=64

1 4,2520897453043 4,2483844710846 4,2481891548817 4,2481793187968 4,2481785562427 4,2481784794502 4,2481801240373 4,2481806450717

2 5,7146542994160 5,6346776567837 5,6299917579000 5,6297311671880 5,6297082656717 5,6297041986715 5,6297049114711 5,6297054942542

3 7,0406666461968 6,8865327058748 6,8705248985409 6,8691263310376 6,8689337803288 6,8688796438764 6,8688791293811 6,8688797641230

4 8,2819176886344 8,0199571254161 8,0148471554549 8,0116551446804 8,0101779583218 8,0097101850207 8,0096998323095 8,0096995132936

5 10,864255384922 9,4698747027127 9,1701084568362 9,0959735944250 9,0803072577894 9,0770626379648 9,0770044965994 9,0769996674388

6 14,936393101229 11,500189531672 10,389430028720 10,141703545272 10,095922412047 10,086751917926 10,086479360292 10,086457928488

7 22,065928867660 12,194624482697 11,149276754627 11,056751265957 11,061992857210 11,049958949156 11,048827598545 11,048744933981

8 36,077250443303 14,435449424880 12,755471993571 12,251080895536 12,104531362078 11,975383200807 11,971806772200 11,971529201401

9 18,103639236524 15,027805180369 13,905772506210 13,226340312298 12,869724807639 12,861418389443 12,860564578391

10 23,349784046507 17,812077032373 14,736883710485 13,815032240354 13,755621330509 13,722662693276 13,720321581219

11 32,776920232748 19,185321853664 15,999791380130 15,226520401205 14,655084328171 14,560575630993 14,554419912893

12 70,899877514923 21,238602125026 18,372518794560 17,096647514311 15,404057743102 15,382886402075 15,365930022950

13 25,600466014319 21,146206870456 19,244207067256 16,295810733297 16,189027981543 16,157653876801

14 31,776274310181 24,402652591047 19,834961244263 17,570787125150 16,964716973140 16,932361992311

15 43,390523731558 28,311743875143 21,686877126008 18,551239214811 17,812827868235 17,693681470302

16 118,73043061083 28,498875030036 24,445792115506 19,105462141179 18,734575356842 18,446247924679

17 33,232234067359 27,591529476822 20,759061284847 19,194818248182 19,184274782746

18 40,195993074875 31,230814423820 22,583314872145 20,203438169196 19,915417315690

19 53,948027261717 35,555178624920 24,566342087150 21,537764760003 20,713791916477

20 179,44896457868 39,926297126958 25,700828819443 22,903442760078 21,430253390817

21 40,952197163555 26,713793741570 23,019686281837 21,960083631100

22 48,603957468753 29,035512479671 24,588202351930 22,954297278943

23 64,470202102566 31,547195956281 26,277187838037 24,135151989962

24 253,01567419605 34,269697389520 28,074548426084 24,560529017260

25 37,231459245261 29,981971268603 25,429512060487

26 40,471842550234 30,205395704821 26,798221039813

27 41,534968905611 32,003193182853 28,246554863734

28 44,047022905218 34,143109306279 29,712270186251

29 48,040745671868 36,408364937129 29,771423105703

30 52,585037967489 38,807202175656 31,370534783899

31 57,903938283104 41,349838965320 33,045220528573

32 64,436172547157 43,751096608525 34,795941556058

33 73,756484340771 44,048927367490 36,624131351263

34 86,548564654683 46,920262004086 37,997872936767

35 95,921192452078 49,983829070806 38,531746985904

36 550,67170110921 53,265396005541 40,521235340853

37 56,798957624151 42,595543315277

38 60,630630006950 44,758141312196

39 64,825093880032 47,013083135586

40 69,476560130176 49,365073775558

41 72,159252128334 51,682739960233

42 74,728613484404 51,819571965328

43 80,815624547990 54,382938759052

44 88,197705391211 57,062608765525

45 98,821780207242 59,867327727024

46 127,28676660459 62,807485439265

47 151,47069917089 65,895556787725

48 963,66795531735 69,146683170174

49 72,579568077997

50 76,128740025667

51 76,217641713239

52 80,090850291380

53 84,238256473134

54 88,711981316659

55 93,583291270593

56 98,952438317887

57 104,96589660912

58 111,85647409608

59 120,09469106109

60 126,55940163194

61 132,14741265105

62 169,05005962257

63 266,36257513236

64 1693,6826217631

Eigenvalues SDI Method for the d-sates (l=2)



Appendix C

Numerical procedure to solve the NRSE
in r-space

In order to solve the NRSE in r-space for a Pure linear potential,

−
d2unl

dρ2 +

[
l(l +1)

ρ2 +ρ

]
unl = εnlunl , (C.1)

we made use of the simple Finite difference method, by approximating the second derivative of
Eq.C.1, by

d2unl

dρ2 ≡ u
′′
i =

ui−1−2ui +ui+1

h2 , (C.2)

where h is the incrementation step. We discretized the variable ρ such that

ρi =−Nh+10; N =−npt +1,−npt +2, ...npt−2,npt−1; i = 1,2, ...npt. (C.3)

where npt is the number of points of our mesh (we used npt = 2000). The choice of the mesh
was motivated by the knowledge that the wavefunctions go to zero when ρ goes to infinity. From a
practical point of view, this limit is already achieved when ρ = 10.

This way we were able to find a set of 2N +1 unknowns for 2N +1 equations:

−

[
ui−1−2ui +ui+1

h2 +
l (l +1)

ρ2
i

+ρi

]
= εui (C.4)

which is a matrix problem, that can be easily solved by diagonalizing the matrix and finding the
eigenvalues ε and the corresponding eigenvectors u = (u0,u1, ...,u2N+1).

The problem for the Pure Coulomb-type Potential, Eq.2.28 was solved in a completely ana-
logue way. We just modified Eq.C.4 in order to be consistent with this new potential.
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